Chapter 5. Writing Your Own Shell

You really understand something until you program it.
-GRR

Introduction

Last chapter covered how to use a shell program using UNIX commands. The shell is a
program that interacts with the user through a terminal or takes the input from a file and
executes a sequence of commands that are passed to the Operating System. In this chapter
you are going to learn how to write your own shell program.

Shell Programs

A shell program is an application that allows interacting with the computer. In a shell the user
can run programs and also redirect the input to come from a file and output to come from a
file. Shells also provide programming constructions such as if, for, while, functions, variables
etc. Additionally, shell programs offer features such as line editing, history, file completion,
wildcards, environment variable expansion, and programing constructions. Here is a list of the
most popular shell programs in UNIX:

sh Shell Program. The original shell program in UNIX.

csh C Shell. An improved version of sh.

tcsh A version of Csh that has line editing.

ksh Korn Shell. The father of all advanced shells.

bash | The GNU shell. Takes the best of all shell programs. It is
currently the most common shell program.

In addition to command-line shells, there are also Graphical Shells such as the Windows
Desktop, MacOS Finder, or Linux Gnome and KDE that simplify the use of computers for
most of the users. However, these graphical shells are not substitute to command line shells
for power users who want to execute complex sequences of commands repeatedly or with
parameters not available in the friendly, but limited graphical dialogs and controls.

Parts of a Shell Program

The shell implementation is divided into three parts: The Parser, The Executor, and Shell
Subsystems.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

The Parser

The Parser is the software component that reads the command line such as “Is -al” and puts it
into a data structure called Command Table that will store the commands that will be
executed.

The Executor

The executor will take the command table generated by the parser and for every
SimpleCommand in the array it will create a new process. It will also if necessary create pipes
to communicate the output of one process to the input of the next one. Additionally, it will
redirect the standard input, standard output, and standard error if there are any redirections.

The figure below shows a command line “A | B | C | D”. If there is a redirection such as “<
infile” detected by the parser, the input of the first SimpleCommand A is redirected from
infile. If there is an output redirection such as “> outfile”, it redirects the output of the last
SimpleCommand (D) to outfile.

¢ I
RRM
A| B | C | D > outfile < infile 2> errfile

If there is a redirection to errfile such as “>& errfile” the stderr of all SimpleCommand
processes will be redirected to errfile.

Shell Subsystems
Other subsystems that complete your shell are:

e Environment Variables: Expressions of the form ${VAR} are expanded with the
corresponding environment variable. Also the shell should be able to set, expand and
print environment vars.

e Wildcards: Arguments of the form a*a are expanded to all the files that match them in
the local directory and in multiple directories .

e Subshells: Arguments between " (backticks) are executed and the output is sent as
input to the shell.

We highly recommend that you implement your own shell following the steps in this chapter.
Implementing your own shell will give you a very good understanding of how the shell
interpreter applications and the operating system interact. Also, it will be a good project to
show during your job interview to future employers.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

Using Lex and Yacc to implement the Parser

You will use two UNIX tools to implement your parser: Lex and Yacc. These tools are used to
implement compilers, interpreters, and preprocessors. You do not need to know compiler
theory to use these tools. Everything you need to know about these tools will be explained in
this chapter.

A parser is divided into two parts: a Lexical Analyzer or Lexer takes the input characters and
puts the characters together into words called tokens, and a Parser that processes the

tokens according to a grammar and build the command table.

Here is a diagram of the Shell with the Lexer, the Parser and the other components.

Final Command Tablc

Is -al aab qaaa

grep L

In:dfit Out:filel Err:dflt

Executor

Command Table

Lexer Parser

Wildeard

and Envars

charactlers

e

Is—al a* | grep me = [ilel

Shell.] shell.y

-q:]ﬁ} .q_,-dl;n.]5 —HI. as

ag A NPE
<a*> <PIPE= garep me
<grep> <me>

<GREAT=>

In:dflt Out:filel | Err:dit

The tokens are described in a file shell.l using regular expressions. The file shell.l is
processed with a program called lex that generates the lexical analyzer.

The grammar rules used by the parser are described in a file called shell.y using syntax
expressions we describe below. shell.y is processed with a program called yacc that
generates a parser program. Both lex and yacc are standard commands in UNIX. These
commands could be used to implement very complex compilers. For the shell we will use a
subset of Lex and Yacc to build the command table needed by the shell.

You need to implement the below grammar in shell.l and shell.y to make our parser interpret
the command lines and provide our executor with the correct information.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

cmd [arg]* [| cmd [arg]*]*
[[> filename] [< filename] [>& filename] [>> filename] [>>& filename]]* [&]

Fig 4: Shell Grammar in Backus-Naur Form

This grammar is written in a format called “Backus-Naur Form”. For example cmd [arg]*
means a command, cmd, followed by 0 or more arguments, arg. The expression [| cmd
[arg]*]* represents the optional pipe subcommands where there might be 0 or more of them.
The expression [>filename] means that there might be 0 or 1 >filename redirections. The
[&] at the end means that the & character is optional.

Examples of commands accepted by this grammar are:
Is —al
Is —al > out
Is —al | sort >& out
awk —f x.awk | sort —u < infile > outfile &

The Command Table

The Command Table is an array of SimpleCommand structs. A SimpleCommand struct
contains members for the command and arguments of a single entry in the pipeline. The
parser will look also at the command line and determine if there is any input or output
redirection based on symbols present in the command (i.e. < infile, or > outfile).

Here is an example of a command and the Command Table it generates:

command

Is -al | grep me > file1

Command Table

SimpleCommmand array:

0: |ls -al NULL

1: | grep me NULL

10 Redirection:

in: default out: file1 err: default

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

To represent the command table we will use the following classes: Command and
SimpleCommand.

// Command Data Structure

// Describes a simple command and arguments

struct SimpleCommand {
// Available space for arguments currently preallocated
int _numberOfAvailableArguments;

// Number of arguments
int _numberOfArguments;

// Array of arguments
char ** arguments;

SimpleCommand () ;
void insertArgument(char * argument) ;

};

// Describes a complete command with the multiple pipes if any
// and input/output redirection if any.
struct Command ({

int _numberOfAvailableSimpleCommands;

int _numberOfSimpleCommands;

SimpleCommand ** simpleCommands;

char * outFile;

char * _inputFile;

char * _errFile;

int _background;

void prompt() ;
void print() ;
void execute() ;
void clear () ;

Command () ;
void insertSimpleCommand(SimpleCommand * simpleCommand) ;

static Command _currentCommand;
static SimpleCommand *_currentSimpleCommand;

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

The constructor SimpleCommand::SimpleCommand constructs a simple empty command.
The method SimpleCommand::insertArgument(char * argument) inserts a new argument
into the SimpleCommand and enlarges the _arguments array if necessary. It also makes sure
that the last element is NULL since that is required for the exec() system call.

The constructor Command::Command() constructs and empty command that will be
populated with the method Command::insertSimpleCommand(SimpleCommand *
simpleCommand) . insertSimpleCommand also enlarges the array _simpleCommands if
necessary. The variables _outFile, _inputFile, _errFile will be NULL if no redirection was
done, or the name of the file they are being redirected to.

The variables _currentCommand and _currentCommand are static variables, that is
there is only one for the whole class. These variables are used to build the Command and
Simple command during the parsing of the command.

The Command and SimpleCommand classes implement the main data structure we will use
in the shell.

Implementing the Lexical Analyzer

The Lexical analyzer separates input into tokens. It will read the characters one by one from
the standard input. and form a token that will be passed to the parser. The lexical analyzer
uses a file shell.l that contains regular expressions describing each of the tokens. The lexer
will read the input character by character and it will try to match the input with each of the
regular expressions. When a string in the input matches one of the regular expressions, it will
execute the code {...} at the right of the regular expression. The following is a simplified
version of shell.l that your shell will use:

/*
* shell.l: simple lexical analyzer for the shell.
*/

3

#include <string.h>
#include "y.tab.h"

%}
%3

\n {
return NEWLINE,

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

[\t] {
/* Discard spaces and tabs */
}
"> n {
return GREAT;,
}
"<" {
return LESS;,
}
">> n {
return GREATGREAT,
}
">& n {
return GREATAMPERSAND,
}
“I 7”7 {
return PIPE;,
}
“&// {
return AMPERSAND,
}

[* \t\n][* \t\n]* |
/* Assume that file names have only alpha chars */
yylval.string val = strdup(yytext);
return WORD;

}

/* Add more tokens here */

/* Invalid character in input */
return NOTOKEN;

3%

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

The file shell. 1 is passed through lex to generate a C file called 1ex.yy.c. This file
implements the scanner that the parser will use to translate characters into tokens.

Here is the command used to run lex.

bash% lex shell.l
bash% 1l1s
lex.yy.c

The file lex.yy.c is a C file that implements the lexer to separate the tokens described in
shell.l.

There are two parts in shell.l. The top part looks like this:

g1

#include <string.h>
#include "y.tab.h"
%}

This is is a portion that will be inserted at the top of the file lex.yy.c directly without
modification that includes header files and variable definitions that you will use in the scanner.

That is where you can declare variables you will use in your lexer.

The second portion delimited by %% looks like this:

%%
\n {
return NEWLINE;
}
(M
/* Discard spaces and tabs */
}
s
return GREAT;
}

[\t\n][A \t\n]* {
/* Assume that file names have only alpha chars */
yylval.string_val = strdup(yytext);
return WORD;

%%

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

This portion contains the regular expressions that define the tokens formed by taking the
characters from standard input. Once a token is formed, it will be returned, or in some cases
discarded. Each rule that defines a token has also two parts:

regular-expression {
action

}
E.g.

\n {
return NEWLINE;
}

The first part is a regular expression that describes the token that we expect to match. The
action is a piece of C code that the programmer adds that is executed once the token
matches the regular expression. In the example above when the character newline is found,

lex will return the constant NEWLINE. We will describe later where the NEWLINE constants
are defined.

Here is a more complex token that describes a WORD. A WORD can be an argument for a
command or the command itself.

[~ \t\n][* \t\n]* ({
/* Assume that file names have only alpha chars */
yylval.string val = strdup (yytext);
return WORD;

The expression in [...] matches any character that is inside the brackets. The expression [A...]
matches any character that is not inside the brackets. Therefore, [* \t\n][* \t\n]* describes a
token that starts with a character that is not a space, tab or newline and is succeeded by zero
or more characters that are not spaces, tabs, or newlines. The token matched is in a variable
called yytext. Once a word is matched, a duplicate of the token matched is assigned to
yylval.string_val in the following statement:

yylval.string_val = strdup(yytext);

this is the way the value of the token is passed to the parser. Finally, the constant WORD is
returned to the parser.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

Adding new tokens to shell.l

The shell.l described above currently supports a reduced number of tokens. As the first step
in developing your shell you will need to add more tokens to the new grammar that are not
currently in shell.l . See the grammar in Figure 4 to see what tokens are missing and need to
be added to shell.l Here are some of these tokens:

">>"{ return GREATGREAT,; }
“I” { return PIPE;}

“&” { return AMPERSAND}
Etc.

Adding the new tokens to shell.y

You will add the token names you created in the previous step into shell.y in the %token
section:
%token NOTOKEN, GREAT, NEWLINE, WORD, GREATGREAT, PIPE,
AMPERSAND etc

Completing the grammar

You need to add more rules to shell.y to complete the grammar of the shell. The following
figure separates the syntax of the shell into different parts that will be used to build the
grammar.

cmd_and_args

cmd [arg]* [| cmd [arg]*]*
\ J

io_modifier

|
I 1

[[> filename] [< filename] [>& filename]
h [>> filename] [>>& filename] J*

l
[&]

io_modifier list

1:nni|:n=.-_l list

background_optional

Figure 3. Shell Grammar labeld with the different parts.

Here is the grammar formed using the labeling defined above:

goal: command_list;

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

arg_list:
arg_list WORD
| *empty*/
cmd_and_args:
WORD arg_list
pipe_list:
pipe_list PIPE cmd_and_args
| cmd_and_args

’

io_modifier:
GREATGREAT Word
| GREAT Word
| GREATGREATAMPERSAND Word
| GREATAMPERSAND Word
| LESS Word

io_modifier_list:
io_modifier_list io_modifier
| *empty*/

background_optional:
AMPERSAND
| *empty*/
command_line:
pipe_list io_modifier_list background_opt NEWLINE
| NEWLINE /*accept empty cmd line*/
| error NEWLINE{yyerrok;}
[*error recovery*/

command_list :
command_list command_line
;/* command loop*/

The grammar above implements the command loop in the grammar itself.

The error token is a special token used for error recovery. error will parse all tokens until a
token that is known is found like <NEWLINE>. yerrok tells parser that the error was
recovered.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

The parser takes the tokens generated by the lexical analyzer and checks if they follow the
syntax described by the grammar rules in shell.y. While checking if the input command line
follows the syntax, the parser will execute actions or pieces of C code that you will insert in
between the grammar rules. This pieces of code are called actions and they are delimited by
curly braces { action; }.

You need to add actions {...} in the grammar to fill up the command table.

Example:
arg_list:
arg_list WORD { currSimpleCmd->insertArg($2); }
| *empty*/

)

Creating Processes in Your Shell

Start by creating a new process for each command in the pipeline and making the parent wait
for the last command. This will allow running simple commands such as “Is -al”.

Command: :execute ()
{
int ret;
for (int i = 0; i < numberOfSimpleCommands; i++) {
ret = fork()
if (ret == 0) {
//child
execvp (sCom[i]-> args[0], sCom[i]->_ args);
perror (“execvp”) ;
_exit(1l);
}
else if (ret < 0) {
perror (“fork”) ;
return;
}
// Parent shell continue
} // for
if ('background) {
// wait for last process
waitpid(ret, NULL) ;
}

}// execute

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

Pipe and Input/Output Redirection in Your Shell

The strategy for your shell is to have the parent process do all the piping and redirection
before forking the processes. In this way the children will inherit the redirection. The parent
needs to save input/output and restore it at the end. Stderr is the same for all processes

‘//\
a\y\y\y@u(ﬁkz <infile

In this figure the process a sends the ouptut to pipe 1. Then b reads its input from pipe 1 and
sends its output to pipe 2 and so on. The last command d reads its input from pipe 3 and
send its output to outfile. The input from a comes from infile.

The following code show how to implement this redirection. Some error checking was
eliminated for simplicity.

void Command: :execute () {

1

2

3 int tmpin=dup (0) ;
4 int tmpout=dup (1) ;
5

6

7

8

int f£din;
if (infile) {
9 fdin = open(infile,O_READ) ;
10 }
11 else {
12
13 fdin=dup (tmpin) ;
14 }
15
16 int ret;
17 int fdout;
18 for (i=0;i<numsimplecommands; i++) {
19
20 dup2 (£din, 0);
21 close (f£din) ;
22
23 if (i == numsimplecommands-1) {
24
25 if (outfile) {

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

26 fdout=open (outfile,a€}a€}) ;
27 }

28 else {

29

30 fdout=dup (tmpout) ;
31 }

32 }

33

34 else {

35

36

37

38 int fdpipe[2];
39 pipe (fdpipe) ;

40 fdout=fdpipe[1l];
41 fdin=fdpipe[0] ;
42 }

43

44

45 dup2 (fdout,1) ;

46 close (fdout) ;

47

48

49 ret=fork () ;

50 if (ret==0) {

51 execvp(scmd[i] .args[0], scmd[i] .args) ;
52 perror (a€rexecvpaE€) ;
53 _exit(1);

54 }

55 }

56

57

58 dup2 (tmpin,0) ;

59 dup?2 (tmpout, 1) ;

60 close (tmpin) ;

61 close (tmpout) ;

62

63 if ('background) {

64

65 waitpid(ret, NULL) ;
66 }

67

68 }

The method execute() is the backbone of the shell. It executes the simple commands in a
separate process for each command and it performs the redirection.

Lines 3 and 4 save the current stdin and stdout into two new file descriptors using the dup()
function. This will allow at the end of execute() to restore the stdin and stdout the way it was

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

at the beginning of execute(). The reason for this is that stdin and stdout (file descriptors 0
and 1) will be modified in the parent during the execution of the simple commands.

3 int tmpin=dup (0) ;
4 int tmpout=dup (1) ;

Lines 6 to 14 check if there is input redirection file in the command table of the form
‘command < infile”. If there is input redirection, then it will open the file in infile and save it in
fdin. Otherwise, if there is no input redirection, it will create a file descriptor that refers to the
default input. At the end of this block of instructions fdin will be a file descriptor that has the
input of the command line and that can be closed without affecting the parent shell program.

6
7 int fdin;
8 if (infile) {

9 fdin = open(infile,O_READ) ;
10 }

11 else {

12

13 fdin=dup (tmpin) ;

14 }

Line 18 is the for loop that iterates over all the simple commands in the command table. This
for loop will create a process for every simple command and it will perform the pipe
connections.

Line 20 redirects the standard input to come from fdin. After this any read from stdin will
come from the file pointed by fdin. In the first iteration, the input of the first simple command
will come from fdin. fdin will be reassigned to a input pipe later in the loop. Line 21 will close
fdin since the file descriptor will no longer be needed. In general it is a good practice to close
file descriptors as long as they are not needed since there are only a few available (normally
256 by default) for every process.

16 int ret;

17 int fdout;

18 for (i=0;i<numsimplecommands; i++) {
19

20 dup2 (£din, 0);

21 close (fdin) ;

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

Line 23 checks if this iteration corresponds to the last simple command. If this is the case, it
will test in Line 25 if there is a output file redirection of the form “command > outfile” and open
outfile and assign it to fdout. Otherwise, in line 30 it will create a new file descriptor that
points to the default input. Lines 23 to 32 will make sure that fdout is a file descriptor for the
output in the last iteration.

23

23 if (i == numsimplecommands-1) {
24

25 if (outfile) {

26 fdout=open (outfile,a€}a€}) ;
27 }

28 else {

29

30 fdout=dup (tmpout) ;

31 }

32 }

33

34 else {...

Lines 34 to 42 are executed for simple commands that are not the last one. For these simple
commands, the output will be a pipe and not a file. Lines 38 and 39 create a new pipe. The
new pipe. A pipe is a pair of file descriptors communicated through a buffer. Anything that is
written in file descriptor fdpipe[1] can be read from fdpipe[0]. IN lines 41 and 42 fdpipe[1] is
assigned to fdout and fdpipe[0] is assigned to fdin.

Line 41 £din=£fdpipe[0] may be the core of the implementation of pipes since it makes the
input fdin of the next simple command in the next iteration to come from fdpipe[0] of the
current simple command.

34 else {

35

36

37

38 int fdpipe[2];
39 pipe (fdpipe) ;

40 fdout=fdpipe[1l];
41 fdin=£fdpipe[0];
42 }

43

Lines 45 redirect the stdout to go to the file object pointed by fdout. After this line, the stdin
and stdout have been redirected to either a file or a pipe. Line 46 closes fdout that is no
longer needed.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

44
45 dup2 (fdout,1) ;
46 close (fdout) ;

When the shell program is in line 48 the input and output redirections for the current simple
command are already set. Line 49 forks a new child process that will inherit the file
descriptors 0,1, and 2 that correspond to stdin, stdout, and stderr, that are redirected to either
the terminal, a file, or a pipe.

If there is no error in the process creation, line 51 calls the execvp() system call that loads the
executable for this simple command. If execvp succeeds it will not return. This is because a
new executable image has been loaded in the current process and the memory has been
overwritten, so there is nothing to return to.

48

49 ret=fork () ;

50 if (ret==0) {

51 execvp(scmd[i] .args[0], scmd[i] .args) ;
52 perror (“execvp”) ;

53 _exit(1);

54 }

55 }

Line 55 is the end of the for loop that iterates over all the simple commands.

After the for loop executes, all the simple commands are running in their own process and
they are communicating using pipes. Since the stdin and stdout of the parent process has
been modified during the redirection, line 58 and 59 call dup2 to restore stdin and stdout to
the same file object that was saved in tmpin, and tmpout. Otherwise, the shell will obtain the
input from the last file the input was redirected to. Finally, lines 60 and 61 close the temporary
file descriptors that were used to save the stdin and stdout of the parent shell process.

57

58 dup2 (tmpin, 0) ;
59 dup?2 (tmpout, 1) ;
60 close (tmpin) ;
61 close (tmpout) ;

If the “&” background character was not set in the command line, it means that the shell
parent process should wait for the last child process in the command to finish before printing
the shell prompt. If the “&” background character was set it means that the command line will

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

run asynchronously with the shell so the parent shell process will not wait for the command to
finish and it will print the prompt immediately. After this, the execution of the command is
done.

63 if ('background) {
64

65 waitpid(ret, NULL) ;
66 }

67

68 }

The example above does not do standard error redirection(file descriptor 2). The semantics
of this shell should be that all simple commands will send the stderr to the same place. The
example given above can be modified to support stderr redirection.

Built In Functions

All built-in functions except printenv are executed by the parent process. The reason for this is
that we want setenv, cd etc to modify the state of the parent. If they are executed by the child,
the changes will go away when the child exits. For this built it functions, call the function inside
execute instead of forking a new process.

Implementing Wildcards in Shell
No shell is complete without wildcards. Wildcards is a shell feature that allows one single
command to be performed on multiple files that match the wildcard.

A wildcard describes filenames that match the wildcard. A wildcard works by iterating over all
the files in the current directory or the directory described in the wildcard and then as
arguments to the command those filenames that match the wildcard.

In general the “*” character matches 0 or more characters of any type. The character ”?”
matches one character of any type.

To implement a wildcard, you should first translate the wildcard to a regular expression that a
regular expression library can evaluate.

We suggest to implement first the simple case where you expand wildcards in the current
directory. In shell.y, where arguments are inserted in the table do the expansion.

shell.y:

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

Before:
argument: WORD {
Command::_currentSimpleCommand->insertArgument($1);

};

After:
argument: WORD {
expandWildcardslfNecessary($1);

};

The function expandWildcardsIfNecessary() is given next. Lines 4 to 7 will insert the argument
the argument arg does not have “*” or “?” and return immediately. However, if these
characters exist, then it will translate the wildcard to a regular expression.

1 void expandWildcardsIfNecessary(char * arg)

2 {

3

4 if (arg has neither “*” nor “?” (use strchr)) {
5 Command: :_ currentSimpleCommand->insertArgument (arg) ;
6 return;

7 }

8

9
10
11
12
13
14
15
16 char * reg = (char*)malloc(2*strlen(arg)+10);

17 char * a = arg;

18 char * r = reg;

19 *r = AN r++;
20 while (*a) {
21 if (*a == ‘*’) { *r='_'; r++; *r="*'; r++; }
22 else if (*a == ‘?') { *r='.' r++;}
23 else if (*a == .’) { *r="\\'; r++; *r='.’; r++;}
24 else { *r=*a; r++;}
25 a++;
26 }
27 *r='$’; r++; *r=0;
28
29 char * expbuf = regcomp(reg, &€});

30 if (expbuf==NULL) {

31 perror (“regcomp”) ;

32 return;

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

33 }

34

35

36 DIR * dir = opendir (“.”);

37 if (dir == NULL) {

38 perror (“oopendir”) ;

39 return;

40 }

41 struct dirent * ent;

42 while ((ent = readdir(dir))'= NULL) {

43

44 if (regexec(ent->d name, re) ==0) {
45

46 Command: :_currentSimpleCommand->

47 insertArgument (strdup (ent->d_name)) ;
48 }

49 }

50 closedir (dir) ;

51 }

52

The basic translations to be done from a wildcard to a regular expression are in the following

table.

Wildcard Character

Regular Expression

Wk /7 w7
W ? V4 W . V4
w o _ ”
Beginning of wildcard VA 77
End of Wildcard wg 7

In line 16 enough memory is allocated for the regular expression. Line 19. Insert the “*” to
match the beginning of the regular expression with the beginning of the filename since we

want to force a match of the whole filename. Line 20 to 26 convert the wildcard characters in
the table above to the corresponding equivalents of the regular expression. Line 27 adds the

“$” that matches the end of the regular expression with the end of the file name.

Lines 29 to 33 compile the regular expression into a more efficient representation that can be

evaluated and it stores it in expbuf. Line 41 opens the current directory and lines 42 to 48

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)

(systemsprogrammingbook.com)

iterates over all the file names in the current directory. Line 44 checks if the filename matches
the regular expression and if it is true then a copy of the filename will be added to the list of
arguments. All this will add the file names that match the regular expression to the list of
arguments.

Sorting Directory Entries

Shells like bash sort the entries matched by a wildcard. For example “echo *” will list all the
entries in the current directory sorted. To have the same behavior, you will have to modify the
wildcard matching as follows:

%9

Line 5 creates a temporal array that will hold the file names matched by the wildcard. The
initial size of the array is maxentries=20. The while loop in line 7 iterates over all the directory
entries. If they match it will insert them into the temporal array . Line 10 to 14 will double the
size of the array if the number of entries has reached the maximum limit. Line 20 will sort the
entries using the sorting function of your choice. Finally, lines 23 to 26 iterate over the sorted
entries in the array and add them as argument in sorted order.

1

2 struct dirent * ent;

3 int maxEntries = 20;

4 int nEntries = 0;

5 char ** array = (char**) malloc (maxEntries*sizeof (char¥*)) ;
6

7 while ((ent = readdir(dir))!= NULL) {

8

9 if (regexec(ent->d name, expbuf)) {
10 if (nEntries == maxEntries) {
11 maxEntries *=2;
12 array = realloc(array, maxEntries*sizeof (char*));
13 assert (array!=NULL) ;
14 }

15 array[nEntries]= strdup(ent->d_name) ;

16 nEntries++;

17 }

18 }

19 closedir(dir) ;
20 sortArrayStrings(array, nEntries); // Use any sorting function
21
22
23 for (int i = 0; i < nEntries; i++) {
24 Command: : _currentSimpleCommand->
25 insertArgument (array[i])) ;
26 }
27
28 free (array) ;

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

Wildcards and Hidden Files

Another feature of shells like bash is that wildcards by default will not match hidden files that
start with the character “.”. In UNIX hidden files start with “.” like .login, .bashrc etc.
Files that start with “.” should not be matched with a wildcard. For example “echo *” will not

[l

display “.” and “..”.

To do this, the shell will add a filename that starts with “.” only if the wildcard also has a “.” at
the beginning of the wildcard. To do this, the match if statement has to be modified in the
following way:. If the filename matches the wildcard, then only if the filename starts with *.” and
the wildcard starts with ‘.’ then add the filename as argument. Otherwise, if the file name does
not start with “.” then add it to the list of arguments.

if (regexec (...)) {
if (ent->d_name[0] == ‘") {
if (arg[0] == *.")
add filename to arguments;
}
}
else {
add ent->d_name to arguments
}
}

Subdirectory Wildcards
Wildcards also may match directories inside a path:

For example, “echo /p*/*a/b*/aa*” will match not only the file names but also the subdirectories
in the path.

To match subdirectories you need to match component by component

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

Jusr/lib/aa
/usr/lib/a* 4 /usr/lib/abb

Jusr/local/axz

Jjusr/local/al2

jusr/1l*/a* <

N /u/loc/ag
fur/1*/ar fu/l*/ax* < s -<::f‘uflac:;ar

Ju/lll/a* <: /u/lll/apple
/u/111/atp

Jusr/local/a*

/unix/134/abecd
ix/134/a*
a"'uni:-t,.l’1=iur,."'al*<‘I{‘LH-L:LKJIF /a /unix/134/a45
;unix;nl;a*<:!unixflllfah
/unix/111/ap3

You may implement the wildcard Strategy in the following way.

Write a function expandWildcard(prefix, suffix) where
prefix- The path that has been expanded already. It should not have wildcards.
suffix — The remaining part of the path that has not been expanded yet. It may have
wildcards.

The prefix will be inserted as an argument when the suffix is empty

expandWildcard(prefix, suffix) is initially invoked with an empty prefix and the wildcard in

suffix. expandWildcard will be called recursively for the elements that match in the path.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach (V2015-2-25)
(systemsprogrammingbook.com)

