CarMaker Tips & Tricks No. 6-005 I) i
Connecting CarMaker with CANoe through FMU —J

AUTOMOTIVE

Date: 2019-06-17
Author: Pooja Hegde, Test Systems and Engineering, Germany
Release No.: CM-7.1.1

Data Files

The CarMaker_CANoe_CoSim.zip file following contains the files.

1) CarMaker Project file: Created using the CarMaker GUI containing the general folder structure
2) CANoe Files: Contains the config file to be used, the database file that is needed, CAPL script
used for controller logic and the final resulting FMU that is exported

Connecting CarMaker with CANoe through FMU

This is an example to connect CarMaker with CANoe for a Rest Bus Simulation of a generic ACC system.
The connection is established to communicate signals between CarMaker and CANoe when both the
tools are open and simulating simultaneously.

Technical Background

FMUs are used to exchange models conveniently between different tools directly as black box (or grey
box) models. This example is based on FMU standard 1.0. The aim here is to obtain input signals to the
FMU from CarMaker, then use these signals in CANoe where the ACC function is implemented and
finally to give the output from the FMU ack to CarMaker. The controller is a very basic open loop
proportional gain speed control since the aim of the example is to establish the connection between the
tools and not develop the function.

Note: The officially supported FMU mode by CarMaker is of the type Co-simulation Standalone (Refer
EMI for Co-Simulation). The default mode of the FMU from CANoe is set at Co-simulation Tool. A
workaround is used to manually set the FMU mode to standalone even when both tools are open and
running and hence this particular example is not officially supported.

CarMaker version: 7.1.1
CANoe version: 11.0

IPG Automotive GmbH « Bannwaldallee 60 * 76185 Karlsruhe « www.ipg-automotive.com

https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_CoSimulation_v1.0.1.pdf

¢ | D (5
Seltez J A UTOMOTIVE

- Go to folder C:\ProgramData\Vector\CANoe\<version> and open file CAN.ini in a text editor
- Change the value of CSv1lForceStandalone to 1. This will set the configuration to be of type Co-
simulation standalone

Setting the Simulation Mode

= [FMI]
; Default length of FMI model variables to be exported
DefaultExportStringlLength=128

; implementation type of exported FMI vl co-simulation FMU
; 0 - CoSimulation Tool (default)

; 1 - CoSimulation StandARlone

CSvlForceStandalone=ﬂ

Setup: CANoe Components

All the required settings are in the Configuration file that is in this example. Below is a brief
explanation of the components.

- Node: Nodes are added to the CAN network to simulate different ECUs
- Dbc file: Database file contains the raw signals that are used for data transfer
o Drag and drop the dbc file from a folder into CANoe GUI. It will be automatically
added to the network

=l
- it Mebtworks
- i CAN Nebworks
- i CAN
- B Nodes
g ocou
Kl Generators
Bl Interactve Generators
O Replay blods
= [Databases

s Traininghetwork

+ = Channels

- A database file needs to be added to the Node to access different signals
o Right click on node and click on configure
o Select the dbc file along with the required network node
o Inthe components tab add the dll files required by the CAPL script that should be
linked to the node. The filepath for the dlls is C:\Program Files\Vector CANoe
11.0\Exec32

IPG Automotive GmbH « Bannwaldallee 60 « 76185 Karlsruhe « www.ipg-automotive.com

Seite 3

2

Mode Cenfiguration

Common CANopen Components Buses

Setings
Tille \Ecu 1l
Metwork node TrainingMNetwark:.CCU
State: (@ simulated O oft
Exacution @ Standard
Extended...

Node specification

File... Edit

Hint The execution mode affects the real ime behavior as well as the supported
function range of the simulation node, Some execution modes require special
hardware features. For details, please refer o the online help

Compile

C)..0e_CoSim\CANoe_files\CarMAker_CANos_CoSim.can |

Cancel Help

Mode Configuration

Common CAMopen Components Buses

CCU (Type: Network Mode):

BN CANOEILNLVE

Mode Layer ..

| P S

AUTOMOTIVE

CAPL: Vector specific programming language that can be used to manipulate and

calculate signals. This can be accessed by doing a right click on the node and selecting
edit. Each node can have a separate CAPL script for different logics.
System Variables: User defined variables to store and calculate data. Different datatypes

can be assigned to the variables.

o These variables can be either mapped to raw signals to store data or the user
can initialize his/her own variables for internal usage in a script (as a trigger for

Example)
* 7 -0 F-dd R
Home Analysis Simulation Test Diagnostics Environment Hardware Tools 1
*A =@ L BB ow
Symbol System Symbol Start Communication Compile Documents Tool Licensing
Explorer Variables |Mapping Values Setup - All Nodes Couplings -
Symbols More
T
% Systern Variables Configuration
UserDefined System-Defined Name Display
v E e Q8 B . B-
Variable Datatype Initial Value Min Max Location
-} {<. control
| Ly brake [Double - |- Configuration
i.{,\. oot
& input_brake Double Configuration
‘% objectdistance Double Configuration
“ speed Double Configuration

IPG Automotive GmbH « Bannwaldallee 60 « 76185 Karlsruhe « www.ipg-automotive.com

Selte4 J !UTDMDT!VE

- Simulated bus: Select the Simulated bus option from the Home menu

File Home Analysis Simulation Test Diagnostics

FMU Export settings

Step 100 w &= Online Mode

-5 Simulated Bus -

.

Start

P Standalone Mode

Measurement

- Go to Environment Tab-> Tool Couplings-> Functional Mockup Interface
o Settings:

Interface Version:1
FMU type: Co-Simulation
Stepsize: 1ms (or other depending on simulation and datatypes)

- Be sure to assign the correct Input/Output status to each signal/variable
- Click on the export symbol on the top-left corner to export the FMU

e < = " =3 B
jome Simulat e Hardware ols
. — =
& ~ 3 = &3
symbol ten ocuments Tool Licensing
orer ble g Couplin:
mbol More
& Functional Mock-up Units (FMUs) X
Import Export
8
Export seftings
Idantifiar [Stepsize[s] ooo200 [
Description: FMI port: 4660 =
Interface version 10 v FMUtype CoSimulation v Decoupled time base:
Exported FMU C1. 70818\CM-CANoe-DemolDemo_poojalconhiguraban\CANoe fmu Seporate FDX file: m}
Variable / Signal Category DataType ByteSze (@) A,
A input_brake Tnput Real) | -
~
% objectdistance Input Real ®4(e + TraningNetwork *
7] v speed Tnput Real 8
e e e Name Tx Node
A brak Real
brake Output el [—
O [
4 i Frames
i 2 Nodes
< >
Comment
oK Cancel Help

CANoe signal mapping

- Datainside CANoe has to be mapped to appropriate channels
o Raw Signal data/data stored in variables should be mapped from a source on to
a destination.

Input_brake, speed and objectdistance are coming in from CarMaker. Let
us consider input_brake

It is first written into the raw signal cno_sigBrake from the dbc file

Some calculations are performed and this data is modified

This modified data is stored in the variable brake

IPG Automotive GmbH « Bannwaldallee 60 « 76185 Karlsruhe « www.ipg-automotive.com

Seite 5

o AUTOMOTIVE

)

a

—J

= This is the signal that will be sent back to CarMaker as a control input
Note that it is important that the data types of the mapped signals match for the

simulation to run without errors.

P ® - HdEd B
Home Analysis Simulation Test Diagnostics Environment Hardware Tools
m 3B ¥
[‘-* ’QI = 5 - :3a08) E "? ‘
Symbol System Symbo! Start Communication Compile Documents Tool Licensing
Explorer Variable: Mapping |Values Setup - All Nodes Couplings -
Symbols More
x A
Destination Factor Source Offset Mapping
cno_sigBrake = 1 X & input_brake + il OnChange
% brake = 1 X cno_sigBrake & o OnChange
cno_sig\ehSpeed = 1 X " speed + i OnChange
cno_sigObjectDist = 1 ¥ “& objectdistance +] OnChange
(=]
FMU Inputs
Car Speed (\ V4 \
- -)
CarMaker ||object Distance FMU CANoe
e —— 3
Driver Brake
——— — 4)
Master Slave
Control Brake
- —
;} FMU Outputs ;/

Signals

- Input_brake: current brake pedal position of the driver (DM.Brake)

- Objectdistance: distance to object nearest point
(Sensor.Object.OB00.relvTgt.NearPnt.ds_p)

- Speed: Current vehicle speed (Car.v)

- Brake: Control signal for vehicle control (VC.Brake)

IPG Automotive GmbH « Bannwaldallee 60 « 76185 Karlsruhe « www.ipg-automotive.com

SelteG J!UTOMDTIVE

CarMaker signal mapping

Follow the usual FMU integration procedure

Note:

Place exported FMU in plugins folder of the project directory

Go to FMI GUI from Applications>FMU Plug Ins and update list

Select the appropriate model class (Vehicle control in this example) and connect all the
required FMU signals

Replace the required subsystem model with FMU in the vehicle data set

Start simulation
ED CarMaker - FMU Plug-ins - [m} X

FMU Plug-ins Close

TEED] FMU Details]

Model class: |VehicleControI v| Settings *

| FMU: CarMaker_CANoe_CoSim |

From CarMaker: FMU Inputs: FMU Params: FMU Qutputs: To CarMaker:
Signals: 32 Signals: 3 Signals: 7 Signals: 1 Signals: 32
Connected: 0 Connected: 3 Connected: 0 Connected: 1 Connected: 1
| |
Signal name |Linktype |Signa\ source / destination u Choose signal source / destination...
[} FMU Inputs
- =8 sensordata.input_brake DDict Di.Brake
=o sensordata.objectdistance DDict Sensor.Object OBO0.revTgtNearPnt.ds_
=o sensordata.speed DDict Carv
[FMU Parameters

- FMU Qutputs
o+ control.brake IF Var Brake

All signals may not appear in the data dictionary of FMI GUI in the beginning. Run the testrun briefly once to
update the list of CarMaker signals.

The Driver setting has to be set so that the driver does not consider traffic. Otherwise the driver model will
interfere with the controller built in the example.

Simulation Visualization

Comparing signals with IPGControl and CANoe-Graphics tools

CANoe-Graphics tool CarMaker-IPGControl

IPG Automotive GmbH « Bannwaldallee 60 « 76185 Karlsruhe « www.ipg-automotive.com

