.........

o p - -
e ‘_‘,.é" —— ——

& megieeraw

Architecture Made Simple

SYSML PLUGIN
18.1

user guide

No Magic, Inc.
2015

All material contained herein is considered proprietary information owned by No Magic, Inc. and is not to be
shared, copied, or reproduced by any means. All information copyright 2006-2015 by No Magic, Inc. All Rights
Reserved.

SysML Block Definition Diagram (BDD) 9
SysML Internal Block Diagram (IBD) 10
SysML Package Diagram 12

SysML Parametric Diagram 12
Requirements Diagram 13

SysML Activity Diagram 15

SysML Use Case Diagram 16

Views and Viewpoints Diagram 17
SysML Sequence Diagram 18

SysML State Machine Diagram 18

SysML Editable Matrices 27
SysML Allocation Matrix 27
Satisfy Requirement Matrix 28
Verify Requirement Matrix 29
Refine Requirement Matrix 30
Derive Requirement Matrix 31
Creating Editable Matrices 32
Building Matrices 33
Editing Matrix 33

Block 36

Domain 37
External 37
System 37
Subsystem 38
System Context 38
Constraint Block 38
Interface Block 39
Flow Specification 39
Value Type 40
Quantity Kind 40
Unit 41

Part Property 41
Shared Property 42

Reference Property 42
Value Property 42
Constraint Property 42
Distributed Property 43
Flow Port 43

Full Port 43

Proxy Port 44
Directed Feature 44

View 44
Viewpoint 45
Conform 45
Moe 46

Objective Function 46
Binding Connector 46

Requirement 47
Extended Requirement 47
Functional Requirement 47
Interface Requirement 48
Performance Requirement 48
Physical Requirement 48
Design Constraint 48
Business Requirement 48
Usability Requirement 48
Test Case 48

Satisfy 49

Verify 49

Derive 49

Copy 49

Accept Change Structural Feature Event Action 49
Change Structural Feature Event 49

Invocation on Nested Port Action 50

Trigger on Nested Port 50

External System 50
Sensor 50

Boundary System 50
User System 50
Actuator 51
Environmental Effect 51

Creating SysML Projects 52
Creating SysML Projects From Templates 53

model

Using OMG SysML Style 54
Using QUDV Model Library 56
Using Quick Search Dialog 57
Using Structure Browser 57
Specific display options 58
Generating SysML reports 59
Context-Specific Value Compartments 60
Progressive Reconfiguration 60
Deep Reconfiguration 61
Context-Specific Value Compartments 62
Feature-based Compartments 67
Expanding and Suppressing Feature-based Compartments 68
Displaying Options in Feature-based Compartments 68
NEW! Managing Element Groups 69
NEW! Displaying Rake icon on symbol 70
Transferring mathematical expressions from MATLAB source code into the
7

SysML Block Definition Diagram Procedures 74
Inserting a new SysML property 75
Inserting a new SysML diagram 76
Using SysML-Style compartments 76
Creating an association block 77
Creating a SysML Internal Block Diagram 78
Representing association roles as block properties 78
Creating instances of blocks with complex structure 78
SysML callout box 86
NEW! Managing Interfaces of the Block 89
NEW! Managing Block properties 90

SysML Internal Block Diagram Procedures 92
Creating Ports 92
Displaying Parts 93
Displaying Ports 94
NEW! Displaying Direction Prefixes of Proxy and Full Ports 95
NEW! Displaying Combined Direction on Proxy Port 96
NEW! Displaying Direction Prefixes of Flow Property 97
Using Edit Compartment 97
Show Default Value and Show Slot Type 98
Provided/Required Interfaces 99
NEW! Managing Interfaces of the Proxy Port 104
Create Directed Features and Specify Feature Directions 105
Displaying Structures of Blocks in Compartments and IBDs 105
Converting nested parts to dot notation 108
Extracting structure 109
Creating a flow port 112

SysML Package Diagram Procedures 116
Using package element 116

SysML Parametric Diagram Procedures 117
Displaying parameters 117
Creating automatic constraint parameters 118
Creating a binding connector 121

Requirements Diagram Procedures 122
Changing requirement type 122
Creating Requirements Diagram for sub-requirements 122
Numbering requirement IDs 123
Using requirement element 129

SysML Activity Diagram Procedures 131
Select Operation 131
Dynamic Centerlines 131
Decomposing activities 133

SysML Use Case Diagram Procedures 137
Numbering Use Cases 138

SysML Sequence Diagram Procedures 138

QUDV Model Library 140
QUDV 140
S| Definitions 140
S| Specializations 140
Sl Value Type Library 140

Active Validation 147
Active Validation Options 150
SysML Constraints 151

SysML Profile 158
MD Customization for SysML Profile 158
SysML Profile APl Changes 159

Systems Modeling Language (SysML) is designed to unify the diverse modeling languages currently used by
system engineers, the same way Unified Modeling Language (UML) is used in the software industry to unify the
modeling languages used by software engineers.

SysML supports the specifications, analysis, designs, verifications, and validations of a broad range of complex
systems.

In addition to supporting all SysML diagrams (Block Definition, Internal Block, Package, Parametric,
Requirements, Activity, and Use Case diagrams), SysML Plugin also makes it possible for MagicDraw to support
additional specifications, analysis, designs, and validations on a broader range of systems and system
integrations.

The SysML sample projects are available in the <md.install.dir>/samples/SysML directory.

The SysML plugin is available in MagicDraw Standard and higher editions for an
additional fee.

In keeping with SysML unifying purpose, the System Engineer perspective was created to unify the diverse
modeling languages currently used by system engineers. All the features dedicated to SysML are accessible. You
can switch among perspectives at any time.

To switch to the System Engineer perspective

1. On the main menu, click Options > Perspectives > Perspectives.
2. In the Select Perspectives dialog, select System Engineer.
3. Click the Apply button.

System Engineer Perspective

- H b
MagicDraw Startup l I

Choose application perspective

Choosing perspective will switch the application to the
graphical user interface designed for a spedific role
{business fsystem analyst, architect, etc.).

Select predefined MagicDraw configuration according listed Perspectives

Full Featured ~Description

Quick Start Perspective provides features primarily
Software Architect (Current)| | dedicated for elicting requirements and

I p—"— modeling the system. Analysis features

are highlighted. Configuration is modeling
oriented. Code engineering,
transformations and other features are
hidden.

Expert

If the 'Expert’ box is checked, the interface will be complex and have all details
exposed. Un-check 'Expert’ if vou are a new user. Mon-expert mode only
exposes importantfcommon options and data in the user interface.

Expert mode can be changed for a project at any time.

You may integrate MagicDraw with Integrated
Deuelupr!'lent Enwrgnments (IDE]. _
If you skip integration process now, you wil be able to get

back to it later.

Lo][teo]

Figure 1 -- Select Perspectives dialog

For more information about how to work with perspectives, see
Y Perspectives Selection and Customization in the Getting Started
section in the MagicDraw User Manual.pdf.

Copyright © 2009-2015 No Magic, Inc.

1 SYSML DIAGRAMS

All diagrams are described in the following sections:
SysML Block Definition Diagram (BDD)
SysML Internal Block Diagram (IBD)
SysML Package Diagram

SysML Parametric Diagram

Requirements Diagram

SysML Activity Diagram

SysML Use Case Diagram

Views and Viewpoints Diagram

SysML Sequence Diagram

SysML State Machine Diagram

2.1.1 SysML Block Definition Diagram (BDD)

Description

A Block Definition Diagram defines the features of a block and any relationships between blocks such as
associations, generalizations, and dependencies, in terms of properties, operations, and relationships (for
example, a system hierarchy or a system classification tree).

Block Definition Diagrams are based on UML class diagrams and include restrictions and extensions as defined by
SysML. They are generally used to display systems of blocks or show a system dictionary and/or extensions.

9 Copyright © 2009-2015 No Magic, Inc.

SysML Diagrams

Sample

bdd [Model] kem Flow End Compatibility [tem Flow End Compatibility lJ

zhlocks zhlocks
Context Fluid
parts
. Radiator
. WaterHeater
- WaterDistiller
Elliitcljllemer e
i Water
: Radiator : WaterHeater : WaterDistiller T
: Distillechater - Fluid) «f:blﬂckx
DistilledWater
zhlocks zhlocks zhlocks zhlock:
P1 P2i P2o P3
flow properties flow properties flow properties flow properties
in p1f: Distilledater in p2fi ; Water out p2fo ;. Water out p3f : DistillecVater

Figure 1 -- SysML Block definition diagram

Related elements
Block
Domain
External
System
Subsystem

System Context
Constraint Block

Interface Block
Flow Specification
Value Type

Quantity Kind
Unit

Related procedures
SysML Block Definition Diagram Procedures

Transferring mathematical expressions from MATLAB source code into the model

2.1.2 SysML Internal Block Diagram (IBD)

Description

Internal Block Diagrams are based on UML composite structure diagrams and include restrictions and extensions
as defined by SysML. An Internal Block Diagram captures the internal structure of a Block in terms of properties
and connections among properties. A Block includes properties so that its values, parts, and references to other
blocks can be specified. However, whereas an Internal Block Diagram created for a Block (as an inner element)

SysML Diagrams

will only display the inner elements of a classifier (parts, ports, and connectors), an Internal Block Diagram created

for a package will display additional elements (shapes, notes, and comments).

All properties and connectors that appear inside an Internal Block Diagram belong to (are owned by) a Block
whose name is written in the diagram heading. That particular Block is the context of the diagram. SysML allows
any property (part) to be shown in an Internal Block Diagram to display compartments within the property (or part)

symbol.

Sample

ibd [Block] Cortext [Logical Flow J_J

allocatedTo allocatedTo
fUllIPort=Device:pp zfUlIPort=Device:pp
T 1]
computer : Computer ! \ primter : Primter
Jr«prnx'g.r» «prnx'!.r»&
[Llpl :Data IF ﬂ pl: Data IF Ilj
r Report 5
ibd [Block] Context[F'h'g.rsical Flow u
computer : Computer primter : Printer
zfulz afullz
— b USBIF cp pp: USBIF -
[+] E:‘S <]
i) /
\ /
Y !

allocatedFrom
eproxyPort=Device:pl

allocatedFrom
eproxyPort=0Device:pl

Figure 2 -- SysML Internal block diagram

Related elements

Part Property
Shared Property

Reference Property

Value Property
Constraint Property

Distributed Property

Flow Port
Eull Port

Proxy Port
Directed Feature

Related procedures

SysML Internal Block Diagram Procedures

Transferring mathematical expressions from MATLAB source code into the model

SysML Diagrams

2.1.3 SysML Package Diagram

Description

Package diagrams typically enable you to organize models by partitioning model elements into packageable
elements and establishing dependencies between packages and/or model elements within these packages. Since
Package diagrams are used to organize models in packages and views, they can include a wide array of
packageable elements.

A package is a construct that enables you to organize model elements, such as use cases or classes, into groups.
Packages define namespaces for packageable elements. Model elements from one package can be imported
and/or accessed by another package. This organizational principle is intended to help establish unique naming of
the model elements and avoid overloading a particular model element's name. Packages can also be shown on
Block Definition diagrams or Requirements diagrams.

Sample
NA

Related procedures
SysML Package Diagram Procedures

2.1.4 SysML Parametric Diagram

Description

Parametric diagrams can be defined as restricted forms of IBDs. They are similar to IBDs except that the only
connectors allowed are binding connectors, each having at least one end connected to a constraint parameter.

A Parametric diagram includes the usage of a constraint block to constrain the properties of another block. It
contains constraint properties and constraint parameters as well as other properties from within that internal block
context. All properties displayed, other than the constraints themselves, must either be bound directly to a
constraint parameter or contain a property that is bound to a constraint parameter (through any number of
containment levels). A constraint block generally contain many constraints, each of them containing many
constraint parameters.

Constrained properties typically have simple value types that can also carry units, quantity kinds, and probability
distributions. This allows for a value property that may be deeply nested within a containing hierarchy to be
referenced at the outer containing level. The context for the usages of constraint blocks must also be specified in
a parametric diagram to maintain the proper namespaces for the nested properties.

The state of the system can be specified in terms of the values of some of its properties. A change in state will
result in a different set of constraint equations to be recalculated. This can be accommodated by specifying
constraints that are conditioned on the value of the property with state.Parametric diagrams can be used to
support trade-off analysis. A constraint block can define an objective function to compare alternative solutions.

SysML Diagrams

Sample

par [Subsystermn] AlOrMothingRegulator [AIIOan‘thingRegula‘tnr U

cp : ComtrolPanel [1]

chosen : TemperatureSignal

ct: Real
o it - Real econstraintz
[—' sensed : TemperatureSignal sub : Subtraction [1]
{o=ct-it}

o : Real

i: Real
|_|] cocling : ActuatorSignal 2
zConstraint= [:|

| —
heating : ActuatorSignal
eva : Evaluation [1] eang uator=lgna
{if i=0 then heating=0 and cooling=1,
if i=0 then heating=1 and cooling=0,
if i=0 then heating=0 and cuuling=f|% |—_'_

cooling : ActuatorSignai_

heating . Actuatorzignal

Figure 3 -- SysML Parametric diagram

Related elements
Moe
Obijective Function

Binding Connector

Related procedures
SysML Parametric Diagram Procedures

Transferring mathematical expressions from MATLAB source code into the model

2.1.5 Requirements Diagram

Description

Requirements Diagrams provide modeling constructs to represent text-based requirements and relate them to
other modeling elements. These requirement modeling constructs are intended to provide a bridge between
traditional requirement management tools and other SysML models.

Requirements diagrams display requirements, packages, other classifiers, test cases, rationales, and
relationships. Possible relationships available for Requirements diagrams are containments, deriveReqt and
requirement dependencies (‘Copy’, ‘Refine’, ‘Satisfy’, “Trace’, and ‘Verify’). The callout notation can also be used
to reflect the relationships of other models.

SysML Diagrams

Requirements can also be shown on other diagrams to illustrate their relationships to other modeling elements.

Sample

req [Package] Reqguirements [reguirements]/J

areguirements
regulate the temperature

Id="R 0"
Text="Adjustthe room temperature to the temperature chosen by the user”

FL PR R areguirements
s | 5, ™ - &\ Temperature setting
/ I » - ld="R 01"
iy | Ay - ~ zrefines |Text="The user shall he
zrefines é?eﬂnw xreﬂnf}» - <ble e SE.t Wz izluf =L E IRl
Iy |) S he wants in the room”
/ | A - -
! | , " -
zextendedReguirements zextendedRequirementz zextendedReguirement = zperformanceRequirement:
Comfort Speed Consumption Accuracy
ld="ER 1" Id="ER 2" Id="ER 3" Id="PR 1"
Text="Adjust the room Text="adjust the Text="Achieve this Text="The systerm should
temperature to temperature adjustment with adjustthe temperature
the chosen as fast as possible” the lower energy within a defined range of
temperature with consumption” + degree Celsius."
no"pumping” of the
system”

Figure 4 -- Requirements diagram

Related elements

Requirement
Extended Requirement

Functional Requirement

Interface Requirement

Performance Requirement

Physical Requirement

Design Constraint

Business Requirement

Usability Requirement

Test Case
Satisfy
Verify
Derive

Copy

Related procedures
Requirements Diagram Procedures

SysML Diagrams

2.1.6 SysML Activity Diagram

Description

Activity diagrams describe control, input, and output flows among actions. They represent the system business
and operational work flows. They capture actions and display their results. They are typically used for business
process modeling and used in situations where all or most of the events represent the completion of internally-
generated actions.

Though Activity diagrams are often classified alongside interaction diagrams, they actually focus on the flows
driven by internal processes (as opposed to external events).

SysML extends control in Activity diagrams and provides extensions that might be very loosely grouped under the
term “continuous”, but are generally applicable to any distributed flow of information and physical items through a
system. It also introduces probability concepts to activities.

Sample

“act [Activity] showDialog [showDialog J_J ’

PR
zcreateObjects

Controller
Dialog

value | saddStructuralFeature'alues |
application

zreadSelfz
self

. b :

" zaddStructuralFeatureValuez | yalue
controlDialog ':‘E

|

|

®

. A

Figure 5 -- SysML Activity diagram

Related elements
Accept Change Structural Feature Event Action

Change Structural Feature Event

Invocation on Nested Port Action

Trigger on Nested Port

Related procedures
SysML Activity Diagram Procedures

Transferring mathematical expressions from MATLAB source code into the model

SysML Diagrams

2.1.7 SysML Use Case Diagram

Description

The purpose of a Use Case Diagram is to give a graphical overview of the functionalities provided by a system in
terms of actors, their goals (represented as use cases), and any dependencies among those use cases.

A Use Case Diagram describes the usage of a system. The associations between actors and use cases represent
the communications that occur between the actors and the subjects to accomplish the functionalities associated
with the use cases. The subject of a use case can be represented through a system boundary. The use cases
enclosed in the system boundary represent the functionalities performed by behaviors (activity diagrams,
sequence diagrams, and state machine diagrams).

Actors may interact either directly or indirectly with the system. They are often specialized so as to represent a
taxonomy of user types or external systems. The only relationship allowed between actors in a use case diagram
is generalization. This is useful in defining overlapping roles between actors. Actors are connected to use cases
through communication paths, each represented by a relationship. There are four use case relationships:

e communication

include

extend

generalization

Communication

A communication path represents an association between two Deployment Targets. It connects
actors to use cases.

Include

An include relationship provides a mechanism for factoring out a common functionality that is
shared among multiple use cases and is always performed as part of the base use case.

Extend

An extend relationship provides an optional functionality, which extends the base use case at
defined extension points under specified conditions.

Generalization
A generalization relationship provides a mechanism to specify variants of the base use case.

SysML Diagrams

Use cases are often organized into packages with the corresponding dependencies among the use cases
included in the packages.

ue [Model] Use Cases[Use Cases J_J

Inverted Pendulum System

~set Amplifier Gain

~ set ControllerGain
—
User — |

. _ il

stop Controller o

e

" start Controller

% ~ disturb System
Huisance

Figure 6 -- SysML Use Case diagram

Related elements
External System

Sensor
Boundary System

User System
Actuator

Environmental Effect

Related procedures
SysML Use Case Diagram Procedures

2.1.8 Views and Viewpoints Diagram

Description

The concept of View and Viewpoint reflects perspectives of different stakeholders. The views are constructed from
a subset of the model that addresses their concerns.

The new technology interprets Views and Viewpoints models to construct XML document conforming with
DocBook standard. A combination of diagrams, tables, model queries and simple text fragments can be presented
in a built-in preview window or exported to PDF or HTML documents.

SysML Diagrams

Sample

package Group Method Implementation [Medel Based Report]/J

wview points
Grouping Viewpoint

wCreatexView()

wviewpoints
Simple Paragraph Viewpoint

zCreatexView()

wview points
Ordinary Paragraph Viewpoint

wCreatexView()

wview points
Custom Table Viewpoint

sCreatexView()

wconforms

wconforms

wconforms

sconforme

Eview s
Introduction

: Dizcription of table
. Listed tems
: Table made from =mart package

T

wview s £
Discription of table
. Introduction
wView s =
Listed items
. Introduction
aviewn =

Table made from smart package

- Introduction

Related elements
View
Viewpoint
Conform

2.1.9 SysML Sequence Diagram

This diagram is similar to UML Sequence Diagram.

2.1.10 SysML State Machine Diagram

This diagram is similar to UML State Machine Diagram.

The supportive diagrams are:

e Requirements Table

e Dependency Matrix

e Predefined Relation Maps

All requirements are text-based. With Requirements Table, you can easily type your requirements into a
spreadsheet-like table instead of the limited-size boxes in a diagram. This table is consistent with OMG SysML
specifications. The Requirements Table has been refactored to be based on the MagicDraw Generic Table

component.

Requirements Table contains requirements. Each row in the table represents a requirement. A new table consists
of three columns by default. However, you can add more columns to represent the properties of each requirement
in the table. Table *below lists the name and description of some of the columns. With this table, you can:

e Create new requirements directly in the table, or import existing ones from your model to the table.

e Directly edit the properties of requirements in the table.

o Directly generate requirements reports, renumber requirements’ IDs, or export the table into a
CSV or HTML format, or into a Microsoft Excel (.xlsx) spreadsheet.

e Quickly search and filter requirements.

e Easily access custom requirement’s properties.

Column Name

#

ID
Name
Text

Requirement Type

Owner

Source

Risk

Verify Method

Visible by
Default

Description

A row number.

A requirement’s ID.

A requirement’s name.
A requirement text.

A requirement’s type, for example, business requirement or
design constraint.

A Requirement’s owner.

(For extendedRequirement and its subtypes only) The source
of a requirement.

(For extendedRequirement and its subtypes only) The risk
level of a requirement.

(For extendedRequirement and its subtypes only) The
method to verify a requirement.

Requirements Table

i HSUV Requirement Table x] q
. [AddNew [By AddNested [AddExisting B Delete From Table % Delete : [B] Export [Report &

 fr Up I} Down 43 Unnest Requirement bi3 Nest Requirement B Show Columns % Show Full Paths

144

Filter: | Cl~

rs
£ Mame Id Text Satisfied By Verified By

= powerSubsystem

2 | [® Range d.2

3 A RegenerativeBraking |d.1

4 [® FuelCapacity 4,2

5 [® CargoCapacity 4.1

Figure 1 -- Requirements table
Creating A Requirements Table

You can create a Requirements Table using the main toolbar, main menu, or Containment tree.

To create a Requirements Table

1. In the Containment tree or on the diagram pane, select an element that can be the owner of the
requirement table.

2. Do one of the following:

e From the main menu, select Diagrams > Create Diagram. Type “reqT” and press
Enter.

e On the main toolbars, click the Create Diagram button. Type “reqT” and press Enter.
e Press Ctrl+N. Type “reqT” and press Enter.

e Right-click the element and from the shortcut menu select Create Diagram >
Requirement Diagrams > Requirement Table.

The newly created requirement table opens on the right side of the application window.

3. Type a table name.

4. Specify a scope for table or simply drag desired requirements from the Containment tree to the
table.

SysML Requirements Table Toolbar
The SysML Requirements table toolbar is located on the main toolbar. There are 13 Requirements table icons on

the Requirements table toolbar: Add New, Add Nested, Add Existing, Delete From Table, Delete, Up, Down,
Unnest Requirement, Nest Requirement, Report, Show Columns, Show Full Paths, and Export.

Icon Name Keyboard Shortcut
Insert
] Add New Ctrl + 1 (on MAC)

20 Copyright © 2009-2015 No Magic, Inc.

Requirements Table

Icon Name Keyboard Shortcut
Alt + Insert
B Add Nested Alt + | (on MAC)
Ctrl + Insert
L Add Existing Ctrl + E (on MAC)
& Delete From Table Delete
i Delete Ctrl +D
{r Up Ctrl + Up
iy Down Ctrl + Down
4im Unnest Requirement n/a
bim Nest Requirement n/a
Report n/a
3 Show Columns n/a
o Show Full Paths n/a
Export n/a
Add New

You can either click the Add New icon on the table toolbar or press Insert to add a new requirement which will
then be automatically added to the table.

If you click the icon, the available requirement types will be listed in the drop-down menu. If you have created your
own custom requirement types, they will appear under the Custom Requirements group in the menu, for
example, “myRequirement” in the following figure. Then, select a requirement type that you want to create from
the drop-down menu. A requirement of the selected type will then be created and added to the table.

Requirements Table

e The owner of the newly-created requirement will be similar to the
owner of the table.

e To select a different owner, hold Shift and then select a
requirement type from the drop-down menu. The Select Owner
dialog will then open, enabling you to choose a different owner.

e If a table row is selected, the requirement in that row will be
selected in the Select Owner dialog automatically.

If the selected owner is a requirement, then you are creating a new

nested requirement.

If you click the buttons, a requirement will be created promptly. You can then change the type of the newly-created
requirement directly in the table.

Add Nested

When a requirement is highlighted in the table, you can either click the Add Nested icon on the table toolbar or
press Alt + Insert to add a new nested requirement, owned by the highlighted requirement, to the table.

Like Add New, if you click the icon, the available requirement types will be listed in the drop-down menu. Then,
select a requirement type that you want to create from the drop-down menu. A nested requirement of the selected
type will then be created, being owned by the requirement highlighted in the table.

Add Existing

To add requirement(s) already existed in your model to a SysML Requirements Table

1. Click the Add Existing icon on the table toolbar or press Ctrl + Insert. The Select Requirement
dialog will open.

Requirements Table

select, search for, or create elements

a B -
Search for an element by using list or tree views. To find an element type text or wildcard (*,7) into the [0 i p— =Y =
"Search by name” input field. Search elements by their qualified names or use camel case when ® .g ,-L'|—|
searching if the appropriate mode is enabled. Nl

Search by name: Selected elements: 2

rype text or wildcard (%, ?) to search A 4.2 FuelZapacity [H3UYModel: :HILY Fe
Be Tree | B= List
Ef B - B2 B 18 matches found

BB Data {18 mafches) [A
E}D HEUWModel: :HSLY Requirements (75 mafohes) Add
=3 HSUW Specification (74 maiches)]
- R (7 matches) Add Recursively

----- A 4.2 FuelZapacity

----- A " " PassengerCapacity = Remove
[4,1 CargoCapacity
B8 "" Eco-Friendiness (7 maich) - E] Remove All

- [H " " Ergonomics
B CE " " Qualification (7 maioh)

B}-CA 2 Performance (4 mafches) [v]
e wlel &
iy koo [« w]]

Figure 2 -- Select Requirement Dialog - Add existing requirements to table

2. Select the requirement element(s) which you want to add to the table.
e Use the Add button to add a requirement selected in the element tree to the Selected
elements: pane.

e Use the Add Recursively button to add all requirements listed under the requirement
selected in the element tree and the selected requirement itself to the Selected
elements: pane.

e Use the Remove button to remove the selected requirement from the Selected
elements: pane.

e Use the Remove All button to remove all requirements from the Selected elements:
pane.

3. In the Select Requirement dialog, click
e OK to add all requirements in the Selected elements: pane to the table, or

e Cancel to cancel the operation.

Delete From Table

To remove requirement(s) from a SysML Requirements Table

1. Select the row(s) of the requirement(s) you want to remove.

Requirements Table

2. Click the Delete From Table icon on the table toolbar or press Delete.
3. The selected requirement(s) will then be removed from the table.

Delete

To remove a requirement(s) from your model

1. Select the row(s) of requirement(s) you want to remove.
2. Click the Delete icon on the table toolbar or press Ctrl + D.
3. The selected requirement(s) will then be removed from the table and from your project.

Up
To move the selected row of requirement up, either click the Up icon on the table toolbar or press Ctrl + Up.
Down

To move the selected row of requirement down, either click the Down icon on the table toolbar or press Ctrl +
Down.

Unnest Requirement

When a nested requirement is selected in the Requirements Table, you can click the Unnest Requirement to
move the selected requirement to be owned by the owner of the current one. The requirement's id will be changed
accordingly. Unnest Requirement also supports for the multiple selection of the nested requirements which are
owned by the same owner.

Nest Requirement

You can select a requirement in the Requirements Table and then click on the Nest Requirement to move the
selected requirement to be owned by the requirement in the previous row. Nest Requirement also support for the
multiple selection of the requirements.

Report

The SysML Requirements Table allows you to generate a requirements report directly from the table. The default
report template used is Requirements Table (Type A).

To generate a report, click the Report icon on the table toolbar. The template drop-down menu will then open.

Select the report template you would like to use. The Generate Report dialog will then open. Choose the report
output filename and then click Generate to instantly generate the report.

e All requirements in the table will be used as the scope of the
generated report.

e To change the scope of the report, activate Report Wizard by
clicking the Wizard button in the Generate Report dialog. Click
the Next button in the Report Wizard twice to proceed to the
Select Element Scope pane. You can then change the report
scope using this pane.

The Built-in report data (in the Select Report Data pane of

Report Wizard) must be selected, in order to generate a report

from this table.

See Section Appendix Ill. Open API for more information on report generation.

Requirements Table

Generate Report : SyshML - Reqguirement Table (Type A)

Output options [J J .\|
This page allows you to configure report files, e.q. to select the report files output location i
and image format, etc, Click Generate button to start generating the report. ——

Qutput Options
Report file:

Report image format:

Joint Photographic Experts Group (*.jpg) v
Auto image size:
Fitimage to paper {arge only) v
Display empty value as Publish to server
() Empty text Select server :

() Custom text: {none) M N-n Upload [1] E

Display in viewer after generating report

{ Generate | Help][Cancel

Figure 3 -- Generate Report dialog - SysML Requirements Table

Show Columns

To show or hide columns in the table, click the Show Columns icon on the table toolbar. The Table Column
drop-down menu will then display.

Select a column name to display that column on the table (or deselect a column name to hide it). To customize
displayed columns, select Customize Column. The Select Custom Requirement Columns dialog will then
display.

Requirements Table

E Select Custom Reqguirement Columns

Select, search for, or create elements e E m

Search for an element by using list ar tree views, To find an element type text or wildcard a J,C 2
(*,7) into the "Search by name” input field, Search elements by their qualified names or use ® |CT l
camel case when searching if the appropriate mode is enabled.

Search by name:
Tl'*r'pe text or wildcard (*, 7) to search |

Bz Tree = List
28 matches found

Master : Fequirement [SvsML Profile: :Requirements: :Requirement] b]

RealizingElements : Element [0.,*] [MD Cusktomization For SysML:cuskomizations for traceabilicy s Properk
RealizingRequirements ;| Class [0,.*] [MD Cuskomizakion for SysML:customizakions for traceabilicy: Prope
RefinedBy : MarmedElement [*] [SwsML Praofile:: Requirements:: Requirement]

RefinedByRequirements : Class [0,.*%] [MD Customization For SvsiL: customizations For traceability::Prop
RefineRequirements : Class [0..%] [MD Cuskomization For SysML:cuskomizakions for traceability s Propert
ReqDerive | Class [0..*] [MD Cuskomization for SysL:customizations For traceabilicy: Properties descrip
ReqDerivedFram @ Class [0,.*] [MD Customization For SysML:custamizakions For traceability:Properties
RegRefineBy : Class [0..*] [MD Customization For SywsML: icustomizations For traceabilitv: :Properties desc

ReqgRefines ; Class [0,.%] [MD Customization For SywsML: i customizations For traceability:: Properties descri|
ReqTracedFrom : Class [0..*] [MD Customization for SywsML: customizations for traceability: : Properties de
ReqTracedTa ; Class [0..*] [MD Custamization For SysMLsicuskamizations For traceahbility::Properties dest
SatisfiedBy : MamedElement [*] [SvsML Profile: :Requirements: :Reguirement] t]

I i] [L]

[k Multiple Selection

Figure 4 -- Select Custom Requirement Columns dialog

SRS IS RGBSR S RS RS RGNS BRSNS R B8

Select a property / tag to be displayed as a new column of the Requirements Table, and then click OK. The new
column will then display on the table. To be able to select multiple properties / tags to be displayed, use the
Multiple Selection button.

Show Full Paths

If you select an element in the table and click this icon, the full path of the element will show.

Export

You can also export a SysML Requirements Table to HTML, CSV, or Microsoft Excel (.xIsx) spreadsheet by
clicking the Export icon on the table toolbar. All requirements in the table will be exported to a selected file format.

26 Copyright © 2009-2015 No Magic, Inc.

Dependency Matrix

Dependency Matrix enables you to visualize and represent your particular model in a tabular form, depending on
the scopes and dependency criteria you have selected.

e Scope. There are two types of scope: row scope and column scope. You can select diagrams,
UML elements, and/or SysML elements as a scope.

e Dependency criteria: include UML relationships, SysML relationships, semantic dependencies
(dependency through property), and relationships through tags.

Cells in a dependency matrix show where the elements in the selected scope are associated with or related to one
another. A dependency matrix allows you to visualize the many-to-many traceability of elements from different
diagrams, particularly for elements interconnected in a large system.

A dependency matrix helps you:
e Quickly visualize dependency criteria.

e Compactly visualize the relationships of a large system, which cannot be easily represented by a
diagram on a single sheet of paper because of the diagram complexity.

e Visualize domain-specific relationships through your own matrix templates for such domains.

e Understand relationships from a particular scope by filtering the unimportant kinds of model
elements.

e Display relationships that cannot be represented in diagrams, such as representations (classes by
lifeline), behavior representations in other diagrams, operation representations by Call Behavior
Actions, etc.

For more information on the Dependency Matrix feature, see the Model Analysis in the ‘Dependency Matrix’

section in the MagicDraw User Manual.

3.2.1 SysML Editable Matrices

You can edit three SysML matrix templates. Not only can you display dependencies between elements, but you
can also add or delete dependency(ies) directly in the editable matrices. The three editable matrices are:

e SysML Allocation Matrix

e Satisfy Requirement Matrix

e Verify Requirement Matrix.

e Refine Requirement Matrix

e Derive Requirement Matrix

3.2.1.1 SysML Allocation Matrix

The SysML Allocation Matrix consists of:
e Row: a named element that can be the client element of the Allocate dependency.
e Column: a named element that can be the supplier element of the Allocate dependency.

Dependency Matrix

e
BOE?

Criteria

Do

Row Element Type: zdficationAction, ValueType,

Row Scope; {HSUVModel,ModelingDomain

Dependency Criteria: |Allocate

Column Element Type: |=dficationAction, ValueType, |

Column Scope: H3UYModel ModelingDomain

Direction: Row to column w

LML,

k]

HSLY,,,

=t Connector:fu...

= - Connector:fu...
e e e ConnectarH.

B3 H5UYModel
B- £ HsUV Behavior
-3 Figure B.33 Behavior Ma...
E]-43 ProvidePower(trans...
2 al:ProportionPower
2 aZ:ProvideGasPo...
= a3:ControlElectric...
= a%ProvideElectri. ..
L[driveCurrent
Bl- £ HUV Structure E ||
El-E2 InternalCombustionEngine

B PowerSubsystem

----- +* Connector:fuelDelive. ..

= - Cannector[H. ..

= F Connector[H. .,

=1 " Connector[H. ..

=t Connectar[H.
=1t Connectar[H. .

R s
s B B [F] —epe ; HSLVM,
EACH -fra; H
e e R] -jce HSUIYM..,
e e e LR TremFlow:Flo.,,
\i e B B TR -py ¢ HELYM,

e

Figure 5 -- SysML Allocation matrix

3.2.1.2 Satisfy Requirement Matrix

Satisfy Requirement Matrix consists of:

e Row: a named element that can be the client element of the Satisfy dependency.

e Column: a Requirement Element that can be the supplier element of the Satisfy dependency.

Dependency Matrix

Criteria
Row Element Type: | =dficationAction, ValueType, Column Element Type: |Reguirement
Row Scope: |HSUVModel ModelingDomain| | ... | Column Scope: H3UVModel ModelingDomain
Dependency Criteria: | Satisfy | [| Direction: Fow to column w
B Bk Slwa .| 2lad] ghid) Fles| |eB| £ |wl 2
BBt ¥ &S S E g0 8D 5ERIE
8~ » R 5 CES&ELEE DEgLaris 2
EE'G%'E.QEMUE:-_-_"EEQJ:}
t¥ 2 isgyEegaLiisees
fs8dd85accs5EfEEEEOEE R
B EEHEBBERERBRBHABERERHSRHE
-] Figure B. 38 Spedal C...
L @ -testRun0B0401 1 HS...
i [H -testVehidel : HSUV.., A

-. = t: H5UVModel: H5UV 5t...
-.[= testVehidel : HSLVMod. ..
w3 Verify[HSUYMaodel: :HSU. ..
|'_—'|E| HSUY Reguirements

{ B, Assodation[HSUVModel:...
L. @ 1 HSUVModel:HSUY ...
E- ' Assodation[HSUVModel:...
L. @ :HSUVModel:HSUY ...

Figure 6 -- Satisfy Requirement matrix

3.2.1.3 Verify Requirement Matrix

The Verify Requirement matrix consists of:
o Row: Named element which can be the client element of Verify dependency.

e Column: Requirement Element which can be the supplier element of Verify dependency.

Dependency Matrix

'V Verify Matrix X

BOE 2 s

Criteria
Row Element Type: 'adﬁcaﬁnn.ﬁ.cﬁun#éiueﬁpe, Column Element Type: 'F‘-.Euquiremen.t
Row Scope: HSL.I'I.-'MDdEI,MDdEIingDumain. o Column Scope: |HsUVMedel ModelingDomain
Dependency Criteria: | Verify . D Direction: Row to column W
Sl | pntiad |l | B Sl m e o s w2 E | S
SR e
s Ehcug2fdfs5v0s883
1883868258 888688287
B HEEBERBERBEERERBEBEEHREBH
T = Steer
EIE HSLY Instance Values
Bl g" Assodation[testVehidel. ..
L @ 1 HSUWModelsHSUY .,
.= b 3 HSUVModel: :H5UW 5t...
.. (= bk : HSUVModel::HSUV ...
-..[= ¢ HSUVModel: :HSUV St...
-..[= & : HSUVModel: :H5UWY 5t...
.8 EAPFuelEconomyTest A
- = i ¢ H5UVMoedel: :HSUY Str...
-2 ice : HSUVModel: :HSUY ...
.. ID
i 3| 2 HSUYModel: s HSUY Sir...,

Figure 7 -- Verify Requirement matrix

3.2.1.4 Refine Requirement Matrix

The Refine Requirement matrix consists of:
e Row: Named element which can be the client element of Refine dependency.

e Column: Requirement Element which can be the supplier element of Refine dependency.

Dependency Matrix

R| Refine Matrix X |

§ D 'ﬁg : @ Delete By Remove From Matrix [3] Change Axes [3f Export : 2 43 - i &

Criteria

Row Element Type: | Package :] Column Element Type: |Requirement
Select Row Scope: HSUVModel [I] Select Column Scope: |HSUVMaodel
Dependency Criteria: |Refine E] Direction: :F'.ow to column -

[El- £ HSLUW Requirements [HSUWModel]

B £ H5UY Spedification : :

{ o : : P i

z E A B8 2Performan | E- A 4 Capa B 8
= o b A
g 2 HHABRRHERE
[H LE w = ™ H i =2 LM H
= o s o o i | -
) 5 o E m =l : M 5 = %]
el o @ 20 D m = Y [
1] W = a5 28 2 % o g =
C w g oz E 2 o 5 T E o 3 O i
b2 =z ! =z W g g 2 o 2o o
=L = o = o £ = o @A s
'] il [=] o — E 3 =] [=]] 3 g g
o o % oo i m L o I = 0oL = v
= oM —_ = Mmoo W =M -
= = B = R = o Ll I T I T I e N =+ =+ =+ [Tyl

B-£3 H5UVModel

--[] Explanations
-] HSUW Analysis
EJ-F3 HSUV Behavior i/
.. DeliverPower Behavior
-] HSUV Instance Values
El-£3 H5UY Requirements

E-E3 HSUV Structure
L. HSUV Interfaces 1 e
B3 HSUY UseCases

Figure 8 -- Refine Requirements matrix

3.2.1.5 Derive Requirement Matrix

The Derive Requirement matrix consists of:
e Row: Named element which can be the client element of Derive dependency.

e Column: Requirement Element which can be the supplier element of Derive dependency.

Dependency Matrix

'R Derive Matrix X

& P % : W Delte By Remove FromMatrix : (] Change Axes [2] Export : o TR
Criteria
Row Element Type: Package [I] Column Element Type: |Requirement
Select Row Scope: HSUWModel E] Select Column Scope: | HSUYModel
Dependency Criteria: |Derive E] Direction: :F‘.nwtomlumn v:
E- £ H5UV Reguirements [H5UVModel]
E}- £ HSUV Specification — :
é El.CH B8 2Performan | El-[H 4 Capa B[
T T @ -1 -
= = = i = :
= ; =] i E R 5 @ % = @
o o @ = = o 2 o Eit
bl 5] @ = = S Q¥ T 3 = =
C O 5 = E g o 38 @ E 9 ®m 5 =
i) = [= =]
22z 2 . zf5guwE o958 £
A1 T ecb6f&g Sf& A
— ™ M o=t —_ —_ o o W — ™7 —
- O T T o T TR R + & Iy
B E B A] BB B B H BB A]
B-E7 HslUvModel
..] Explanations
-.E7 HSUY Analysis i 1 Va

E-E3 H5LV Behavior
t...] DeliverPower Behavior
- HSUW Instance Values
Bl HSUY Requirements
{9 HSUV Specification 3 & A A/
El-E3 HsUV Structure

L. P HSUY Interfaces

Figure 9 -- Derive Requirement matrix

3.2.1.6 Creating Editable Matrices

You can create matrices by using either the main toolbar, main menu, or Containment tree.

To create a matrix

1. In the Containment tree or on the diagram pane, select an element that can be the owner of the
matrix.
2. Do one of the following:
e From the main menu, select Diagrams > Create Diagram. In the opened Create
Diagram dialog, select a matrix type and press Enter.

e On the main toolbars, click the Create Diagram button. In the opened Create
Diagram dialog, select a matrix type and press Enter.

e Press Ctrl+N. In the opened Create Diagram dialog, select a matrix type and press
Enter.

e Right-click the element and from the shortcut menu select Create Diagram >
Requirement Diagrams or SysML Matrices and click a desired matrix type.

Dependency Matrix

The newly created matrix opens on the right side of the application window.

3. Type a matrix name.

4. Select criteria and a scope to be represented in the matrix or simply drag desired elements from
the Containment tree.

3.2.1.7 Building Matrices

The matrices you have created in Section 3.2.1.6 (Creating Editable Matrices) are empty matrices. To build a
complete matrix, you must also provide the row and column scopes of the matrix. All valid elements in the selected
scope will be used to build the matrix.

To select the row and column scopes of a matrix:

. Click the ... button next to the Row Scope in the matrix pane. The Scope dialog opens.

. Select the check box(es) in front of the packages, models, or profiles that will be the row scope.
. Click OK to close the Scope dialog.

. Click the ... button next to the Column Scope in the matrix pane. The Scope dialog will open.

. Select the check box(es) in front of the packages, models, or profiles that will be the column
scope.

6. Click OK to close the Scope dialog.
7. Click the Refresh button.

a ~r WON -

3.2.1.8 Editing Matrix

You can create or remove dependencies directly in an editable matrix. Double-click an empty rectangle in the
matrix to create a new dependency, or double-click an existing dependency in the matrix to remove it.

Creating New Dependencies
You can create a corresponding dependency of each matrix directly in the matrix by double-clicking on the
intersection of the row and column elements. The row and column elements will become the client and supplier

elements of the created dependency respectively.

Another way to create a dependency is by right-clicking on the intersection of the row and column elements. Then,
select New Relation > Outgoing, and select the dependency you would like to create.

Dependency Matrix

ARHHAEE
Elgl&lz|2]2|2
clm|lo|@|=|=|=
S22 (8=2|5]3
IHEHEE
Slels|el =
O - O = I I
AEIEAR IR AR AR
Do |o|o||a|c=
Bl H5UY Behavior 1|1 R
El-&3 Acceleratel transModeCmd 5 | 1 1 i 1 1
El.&3 ProvidePower(transMo... | 1 1 1 1|1
L. (D al:ProportionPower P Vs
D aZ:ProvideGasPower | Mew Relation b ||| Outgeing * || 2 Allocate
b 0 @diControlElectricPo,., Delete Relation r
b 1 a4:ProvideEleckricPo. ., z ; List
El-F H3UW Structure 1 il
E-E PowerSubsystem 1 (R
.8 -emg : HSUYModel: HSU,., e
.. CH -pc : HSUYModel::HSU. . ¢
.. [-pcu ¢ HSWMadel: tHSL... |

Figure 10 -- Editable Matrix context menu
Removing Existing Dependencies

You can also remove an existing dependency of each matrix by double-clicking on that particular dependency that
you want to remove.

Another way to remove a dependency is by right-clicking on the intersection of the row and column elements.
Then, select Delete Relation, and select the dependency you would like to delete.

Dependency List

You can view a list of dependencies associated with a cell in an editable matrix by right-clicking on the cell, and
then select Dependency List from the context menu. The Dependency List dialog will then display.

Dependency List

:.I H L -
2 8 BD BE

Dependency Mame Row Element Mame | Direction Column Element ...
=
A allocate[HsU, .. al:ProportionP, . —_— T az:ProvideGas,..

Figure 11 -- Dependency List dialog

Predefined Relation Maps

The SysML plugin introduces a predefined set of Relation maps to increase traceability of system requirements
and design elements.

There are three predefined relation maps:
e Structure Decomposition Map
e Activity Decomposition Map

e Instance Map

The Relation map is a special kind of diagram that automatically updates and renders an elements dependency
tree according to predefined dependency criteria.

For more information about selecting and creating elements, see

section “Manipulations in Relation Map” in “MagicDraw

UserManual.pdf”.

4.1.1 Block

Description

Blocks provide a general purpose capability to describe the architecture of a system, and represent the system
hierarchy in terms of systems and subsystems. Blocks describe not only the connectivity relationships within /
between a system and its subsystems, but also quantitative values as well as other information about that system
(for example, documentation).

You can use SysML blocks throughout all phases of system specification and design, and apply them to many
different kinds of systems. These include modeling either the logical or physical decomposition of a system, and
the specification of software, hardware, or human elements.

A Block is a modular unit that describes the structure of a system or an element. It may include both structural and
behavioral features, such as properties and operations, that represent the state of the system and behavior that
the system may exhibit. Some of these properties may hold parts of a system, which can also be described by
blocks. A block may include a structure of connectors between its properties to indicate how its parts or other
properties relate to one another.

Any reusable form of description that may be applied to a system or a set of system characteristics can be
described by a block. Such reusable descriptions, for example, may be applied to purely conceptual aspects of a
system design, such as relationships that hold between parts or properties of a system. Parts (properties) in these
systems can interact by many different means, such as software operations, discrete state transitions, flows of
inputs and outputs, or continuous interactions. Connectors owned by SysML blocks can be used to define
relationships between parts or other properties of the same containing block.

Sample

zhlock=
AC Power

constaimts
;. ACElectricPowerEquation

values
v W ACIunit = volt}
i: A AC{unit = ampere}
pewer : Wiunit = watt}

Related procedures
NEW! Displaying Direction Prefixes of Proxy and Full Ports

NEW! Managing Interfaces of the Block

NEW! Managing Block properties

SysML Block Definition Diagram Elements

4.1.2 Domain

Description

A Domain block represents an entity, a concept, a location, or a person from the real-world domain. A domain
block is part of the system knowledge [1].

Sample

zdomains

AutomotiveDomain
> Driver
: Passenger
: Mairtainer
drivingConditions ;| Environment
HSLW . HybridSLY
vehicleCargo | Baggage

4.1.3 External

Description

An External block is a block that represents an actor. It facilitates a more detailed modeling of actors like ports or
internal structures [1].

Sample

zexternalz
Road

incline : Real

4.1.4 System

Description

A System is an artificial artifact consisting of blocks that pursue a common goal which cannot be achieved by the
system's individual elements. A block can be a software, hardware, a person, or an arbitrary unit [1].

SysML Block Definition Diagram Elements

Sample

zgystems
HybridSUv

b : BodySubsystem = b
bk : BrakeSubsystem = bk
c: ChassisSubsystem =c
i Interiorsubsystem =i

|': LightingSubsystem =1
mpg . Real

p: PowerSubsystem = p
payloadCapacity . Real
position : Real
vehicleDryWeight | Real
WM : String

4.1.5 Subsystem

Description
A Subsystem is a typically large, encapsulated block within a larger system [1].

Sample

zsubsystems
Cylinder

valmes
+hore ; m = 0.06{unit = metre}
+gtroke . m = 0.1325{unit = metre}

4.1.6 System Context

Description
A System context element is a virtual container that includes the entire system and its actors [1].

Sample

zgystem context:
Car

parts
+wheel : Wheel

properties
+driver : Driver
+passenger | Passenger

4.1.7 Constraint Block

Description

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability
models with other SysML models. Constraint blocks can be used to specify a network of constraints that represent
mathematical expressions such as {F=m*a} and {a=dv/dt}, which constrain the physical properties of a system.
Such constraints can also be used to identify critical performance parameters and their relationships to other
parameters, which can be tracked throughout the system life cycle. A constraint block includes constraints (such

SysML Block Definition Diagram Elements

as {F=m*a}) and their parameters (such as F, m, and a). Constraint blocks define generic forms of constraints that
can be used in multiple contexts.

Reusable constraint definitions can be specified on Block Definition Diagrams and packaged into general-purpose
or domain-specific model libraries. Such constraints can be arbitrarily complex mathematical or logical
expressions. The constraints can be nested to enable a constraint to be defined in terms of more basic constraints
such as primitive mathematical operators.

In general, you should define constraints in constraint blocks in a Block Definition Diagram first, and then use a
Parametric Diagram to bind constraint parameters to properties.

Sample

zconstraints
VerticalVelocity

constaints
{v=v0*sin({a)}

parameters
v mis{unit = metrePerSecond}
a: rad{unit = racian}
w0 : mis{unit = metrePerSecond}

4.1.8 Interface Block

Description

An Interface Block is a special kind of block for typing proxy ports. It has no behaviors or internal parts. Normally,
it contains a set of flow properties which can be shown in the “flow properties” compartment. An interface block is
introduced in OMG SysML 1.3 specification to replace the use of flow specifications which have been deprecated.

Sample

zirterfaceBlocks

FS_ICE
flow properties
out enginelata ; ICEData
In mixture : Real
in throttlePosition : Real

Related procedures
NEW! Managing Interfaces of the Block

NEW! Manaqing Interfaces of the Proxy Port

4.1.9 Flow Specification

Description

A Flow Specification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compartment
that lists the flow properties. A flow specification is used to type Flow Ports, in order to specify items which can
flow via the ports.

The only valid attribute of a Flow Specification element is a Flow

ke | Fropery

For more information on the flow port and the flow properties,
please refer to the "SysML Internal Block Diagram Procedures"
chapter.

SysML Block Definition Diagram Elements

Sample

zFlowSpecification=
FuelFlow
aFowPmopertys
fuelReturn : Fuel{readCnly direction = in}
fuelSuplly : Fuel{readOnly direction = out}

4.1.10 Value Type

Description

A Value Type is defined as a stereotype of UML Data Type to establish a more neutral term for system values that
may never be given a concrete data representation. A Value Type adds an ability to carry a unit of measure of a
quantity kind associated with the value. If these additional characteristics are not required, then UML Data Type
may be used (it is, however, not recommended by SysML 1.3 specification).

In general, define quantity kinds first, followed by units and their quantity kinds. After that, define value types and
their units (and quantity kinds). However, users often forget to enter the corresponding quantity kind of a value
type with unit. An existing active validation constraint for filling the correct quantity kind to a value type with
unspecified quantity kind, by selecting the Apply valid quantity kind to the Value Type option. For more
information, see the "Validation" chapter.

You can select value types from the model library that holds more than 80 units
and quantity kinds of Sl system.

Sample
WalueTypes
mdis
ovalueTypes
unit= mCubicMeterPersecand

4.1.11 Quantity Kind

Description

A Quantity Kind (in SysML 1.0 and 1.1, called ‘Dimension’) is a kind of quantity that can be measured using
defined and unrestricted units of measurement. For example, length, a quantity kind, may be measured by meter,
kilometer, or foot units.

The only valid use of a Quantity Kind instance is to be referenced by the “quantity
\2) INPORTANT: kind” property of a Value Type or Unit stereotype.

SysML Internal Block Diagram Elements

Sample

zRuantityKind=
torgque : DerivedQuantityKind

name = "torgque"

4.1.12 Unit

Description

A Unit is a particular value that can be used to specify a quantity of a dimension. A unit often relies on precise and
reproducible measuring techniques. For example, a unit of length such as meter may be specified as a multiple of
a particular wavelength of light. A unit can also use less stable or precise ways to express some values, such as

costs expressed in some currencies, or a severity rating measured by a numerical scale.

The only valid use of a Unit instance is to be referenced by the “unit” property of a

\2/ TPORTAIE 4 Value Type stereotype.

Sample

zlinit=
radianPerSecond : DerivedUnit

factor = second®1

name = "radian per second"
primaryQuantitykind = planeAngle
quantitykind = angularvelocity

4.2.1 Part Property

Description

A Part Property is a property that specifies a part with strong ownership and coincidental lifetime of its containing
Block. It describes a local usage or a role of the typing Block in the context of the containing Block. Every Part
Property has ‘composite’ AggregationKind and is typed by a Block. Part Properties are displayed in the ‘parts’
compartment.

Sample

clock : Clock

Related Procedures
NEW! Displaying Direction Prefixes of Flow Property

SysML Internal Block Diagram Elements

4.2.2 Shared Property

Description

A Shared Property is a property that specifies a shared part of its containing block. Every Shared Property has
‘shared’ Aggregationkind and is typed by a block. Shared Properties are displayed in the ‘references’
compartment.

4.2.3 Reference Property

Description

A Reference Property is a property that specifies a reference of its containing Block to another Block. Every
Reference Property has ‘none’ AggregationKind and is typed by a block. Reference Properties are displayed in
the ‘references’ compartment.

counterCard : A/D Counter Card |

4.2.4 Value Property

Description

A Value Property is a property that specifies the quantitative property of its containing Block. Every Value Property
has ‘composite’ AggregationKind and is typed by a SysML Value Type. Value Properties are displayed in the
‘values’ compartment.

Sample

time : sec

4.2.5 Constraint Property

Description

A Constraint Property is a property that specifies the constraints of other properties in its containing Block. Every
Constraint Property has ‘composite’ AggregationKind and is typed by a Constraint Block. Constraint Properties
are displayed in the ‘constraints’ compartment.

SysML Internal Block Diagram Elements

Sample

zconstraint
: Derivative
1y = derivative(x)}

4.2.6 Distributed Property

Description

A Distributed Property is a property of a Block or a Value Type, used to apply a probability distribution to the
values of the property. Specific distributions can be defined by applying a subclass of the DistributedProperty
stereotype to the property.

4.2.7 Flow Port

Description

A Flow Port is a port that specifies the input and output items that can flow between a Block and its environment.
Flow Ports are interactions points through which data, material, or energy “can” enter or leave the owning Block.
The specification of what can flow is achieved by typing the Flow Port with a specification of things that flow. This
can include typing an atomic Flow Port with a single type (Block, Value Type, or Signal) representing the items
that flow in or out, or typing a non-atomic Flow Port with a Flow Specification which lists multiple items that can
flow. In general, Flow Ports are intended to be used for asynchronous, broadcast, or send-and-forget interactions.
Note that only non-atomic Flow Ports can be conjugated. Once conjugated, all the directions of the typing Flow
Specification's items are negated.

suction © Fluid Flow suction : Suction Nozzle
1
%ucﬁiun - Fluid Flow

Sample

Flowe port:

4.2.8 Full Port

Description

A Full Port is a port which is considered as a separated element of owning blocks. It may have internal parts or
behaviors that support interactions with owning blocks.

Views and Viewpoints Diagram Elements

Sample

: Tractor efulls

. 3-Poirt Hitch

Full port

4.2.9 Proxy Port

Description

A Proxy Port is a port that specifies features of owning blocks or internal parts that are available to external blocks
through external connectors to the ports. It does not specify separated elements of the owning blocks or the
internal parts. It can only be typed by Interface Block.

Sample

Eproxys
dcPower : DC Power | dcOutput © DT Power 1B =5
Prowy port ¥

Related procedures

NEW! Displaying Direction Prefixes of Proxy and Full Ports

NEW! Displaying Combined Direction on Proxy Port

NEW! Managing Interfaces of the Proxy Port

4.2.10 Directed Feature

Description

A directed feature is a feature which applies the «DirectedFeature» stereotype. It specifies that the feature is
provided, required, or both required and provided by an owning block.

Sample

dcPower : DC Power

4.3.1 View

Description

A view is a representation of a whole system from the perspective of a single viewpoint. A view can only own
element import, package import, comment, and constraint elements.

Views and Viewpoints Diagram Elements

Sample

BViewW g

Introduction

: Discription of table
. Listed items
: Table made from =mart package

4.3.2 Viewpoint

Description

A viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. The languages and methods for specifying a view can reference
methods and languages in another viewpoint. They specify the elements expected to be represented in the view
that may be formally or informally defined.

A viewpoint cannot own any operation nor attribute.

u ORTA

Sample

wwigw points
Grouping Viewpoint

aCreatesView()

4.3.3 Conform

Description

A Conform relationship is a dependency between a view and a viewpoint. The view conforms to the rules and
conventions specified in the viewpoint.

SysML Parametric Diagram Elements

Sample
e ks Int:ollfcl:leuv:::ion =
Grouping Viewpoint S CONTOME
CreateaVi " | : Discription of table
«CreatexView() . Listed items
: Table made from smart package

4.4.1 Moe
Description

moe (measure of effectiveness) represents a parameter whose value is critical for achieving the desired cost
effectiveness mission.

Sample

zMoes
HS5UValt1 . fuelEconomy : Real

4.4.2 Objective Function

Description

An Objective Function (also known as 'optimization' or 'cost function') is used for determining the overall value of
an alternative in terms of weighted criteria and/or moe's.

Sample

zohjectiveFunction:
: MyObjectiveFunction
{CE=Sum{i* P

4.4.3 Binding Connector

Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal
values. If the properties at both ends of a binding connector are typed by DataTypes or ValueTypes, it means that
the instances of the properties at both ends must hold equal values, recursively through any nested properties
within the connected properties. If the properties at both ends of a binding connector are typed by Blocks, it means
that the instances of the properties must refer to the same block instance. As with any connector owned by a
SysML Block, each end of a binding connector may be nested within a multi-level path of properties accessible
from the owning Block. The NestedConnectorEnd stereotype is used to represent such nested ends, just as for
nested ends of other SysML connectors.

SysML Requirements Diagram Elements

Constraint blocks can only be defined on a BDD or a package diagram. A constraint block typically contains one or
more constraint parameters, which are bound to properties of other blocks in a surrounding context where the
constraint is used.

All properties of a constraint block are constraint parameters, with the exception of constraint properties that hold
the internally-nested usages of other constraint blocks. Constraints are specified only in an informal language, but
a more formal language such as OCL or MathML could also be used.

Sample

-

: UnitCostEquation I: uc ZMoes
HSUValt1.unitcost @ Real

r,

4.5.1 Requirement

Description

A Requirement specifies a capability or a condition that must (or should) be satisfied. Requirements are used to
establish a contract between the customer (or other stakeholders) and those responsible for designing and
implementing the system. A requirement can also appear on other diagrams to show its relationship to other
modeling elements.

When a requirement nests other requirements, all the nested requirements apply as part of the container

requirement (the requirement that contains all the nested requirements). Deleting the container requirement will
thus delete all the nested requirements it contains; a functionality inherited from UML.

4.5.2 Extended Requirement

Description

A SysML Extended Requirement is a standard Requirement subtype, which adds some properties to a
requirement element. These properties such as source, risk and verify method are important for requirement
management. Specific projects should add their own properties.

All these properties are now available in the standard Requirement Specification window and Requirements

Table. If any of these property values is specified, a requirement is automatically converted to
ExtendedRequirement.

4.5.3 Functional Requirement

Description

A Functional Requirement is a requirement that specifies a behavior that a system or part of a system must
perform.

SysML Requirements Diagram Elements

4.5.4 Interface Requirement

Description

An Interface Requirement is a requirement that specifies the ports for connecting systems and parts of a system.
Optionally, it may include the items that flow across the connector and/or the Interface constraints.

4.5.5 Performance Requirement

Description

A Performance Requirement refers to a requirement that quantitatively measures the extent to which a system or
a system part satisfy a required capability or condition.

4.5.6 Physical Requirement

Description

A Physical Requirement specifies the physical characteristics and/or physical constraints of a system, or a system
part.

4.5.7 Design Constraint

Description

A Design Constraint is a requirement that specifies a constraint on the implementation of a system or on part of it.

4.5.8 Business Requirement

Description

A Business Requirement is a requirement that specifies characteristics of the business process that must be
satisfied by the system.

4.5.9 Usability Requirement

Description

A Usability Requirement specifies the fitness for use of a system for its users and other actors.

4.5.10 Test Case

Description

A test case (Activity / StateMachine / Interaction) is a method for verifying a requirement.

SysML Activity Diagram Elements

4.5.11 Satisfy

Description
A 'Satisfy' relationship is a dependency between a requirement and a model element that fulfills that requirement.

As with other dependencies, the arrow direction points from the satisfying (client) model element to the (supplier)
requirement that is satisfied.

4.5.12 Verify

Description
A 'Verify' relationship is a dependency between a requirement and a test case or a model element that can

determine whether the system fulfills the requirement. As with other dependencies, the arrow direction points from
the (client) test case to the (supplier) requirement.

4.5.13 Derive

Description

A 'Derive' relationship is a dependency between two requirements (a derived requirement and a source
requirement), where the derived requirement is generated or inferred from the source requirement.

4.5.14 Copy

Description

A 'Copy' relationship is a dependency between a supplier requirement (master) and a client requirement (slave),
specifying that the client requirement text is a read-only copy of the supplier requirement text.

4.6.1 Accept Change Structural Feature Event Action

Description

An Accept Change Structural Feature Event Action is an action that waits for the occurrence of a Change
Structural Feature Event.

4.6.2 Change Structural Feature Event

Description

A Change Structural Feature Event is an event which is used to model changes in values of structural features.

SysML Use Case Diagram Elements

4.6.3 Invocation on Nested Port Action

Description
An Invocation on Nested Port Action is an invocation action that applies the «InvocationOnNestedPortAction»

stereotype which extends the UML’s onPort property to support nested ports.

4.6.4 Trigger on Nested Port

Description

A Trigger on Nested Port is a trigger that applies the «TriggerOnNestedPort» stereotype extending the UML’s Port
property of the trigger to support nested ports.

4.7.1 External System

Description

An External System is a system that interacts with the system under development. For example, Information
server or Monitoring system [1].

4.7.2 Sensor

Description
A Sensor is a special external system that forwards information from the environment to the system under

development. For example, Temperature sensor [1].

4.7.3 Boundary System

Description
A Boundary System is a special external system that serves as medium between another system and the system

under development without having its own interests in the communication. For example, Bus system or
Communication system [1].

4.7.4 User System

Description

An User System is a special external system that serves as medium between a user and the system without
having its own interests in the communication. For example, Input Device or Display [1].

SysML Use Case Diagram Elements

4.7.5 Actuator

Description
An Actuator is a special external system that influences the environment of the system under development. For

example, Heater assembly or Central locking system of a car [1].

4.7.6 Environmental Effect

Description

An Environmental Effect is an influence on the system from the environment without communicating with it
directly. For example, Temperature or Humidity [1].

1 USING SYSML PLUGIN

You can find out the useful information about working with SysML plugin while studying:

e Generic Procedures

e Diagram Specific Procedures

Depending on whether you want to:

e Creating SysML Projects

e Creating SysML Projects From Templates
e Using OMG SysML Style

e Using QUDV Model Library

e Using Quick Search Dialog

e Using Structure Browser

e Generating SysML reports

e Context-Specific Value Compartments

e Feature-based Compartments

o NEW! Managing Element Groups

e NEW! Displaying Rake icon on symbol

e Transferring mathematical expressions from MATLAB source code into the model

5.1.1 Creating SysML Projects

To create a new workspace for a new project

1. Do one of the following:
e Click File > New Project on the main menu.

e Click the New Project button on the main toolbar.
e Press CTRL+N.
The New Project dialog will open.

2. Click the SysML Project icon on the left-hand side.

3. Enter a filename in the Name box.

4. Click the “...” button to select a location for your new project.
5. Click OK.

If the current perspective is not the System Engineer perspective, the Open Associated Perspective dialog will
open. Select Yes to change it to the System Engineer perspective.

52 Copyright © 2009-2015 No Magic, Inc.

Generic Procedures

Create a new blank SysML project
Systems Modeling Language (SysML) is designed for systems engineering
applications. Creating a SysML project will switch application to the SysML
graphical user interface and will use the SysML model templates, Specify a
project name, select a location to store the newly created project, and press QK.

| Systems Engineering Mame: |Distiler_model

oy
sWEHL

Project location: | C:'\Projects E]
I [7] Create directory for project and related data

|0rl:her

Figure 1 -- New Project dialog

5.1.2 Creating SysML Projects From Templates

To create a SysML project from a template

1. Do one of the following:
e Click File > New Project on the main menu.

e Click the New Project button on the main toolbar.
e Press CTRL+ N.
The New Project dialog opens.

2. Click the Project from Template icon.

3. Enter a filename in the Name box.

4. Click the “...” button to select a location for your new project.

5. Select the SysML template from the Select template tree and click OK.

53 Copyright © 2009-2015 No Magic, Inc.

Generic Procedures

Create a new project from a template

A project created from a template will contain a predefined project structure and
customized graphical user interface. Spedfy a project name, select a location to
store the newly created project, choose a project template, and dick QK.

| Systems Engineering Mame: |Distiller_model

b
#4FHL

SysML
Praoject

Project location: | C:'\Projects :]

[Create directory for project and related data

| Other
@ [7] Clone custom modules

Project Inigue prefix for module names:
from Template

—Select template
.. Templates

Bl SysML

~Template description

Ise this template to create a new SyshML project
using SysML profile. Also load 51 ValueType and
QUDY model libraries.

K] [Cancel] [Help

Figure 2 -- Selecting SysML template

For more information on how to work with a new project, see the

Working with Projects section in the MagicDraw UserManual.pdf.
I —

5.1.3 Using OMG SysML Style

SysML plugin provides the visual style of OMG SysML Specifications (OMG SysML style) that you can use with
your SysML model. Such style is available with every new SysML project created by SysML 16.8 or later.

To use OMG SysML style in a new SysML project

1. Create a SysML project (see "Creating SysML Projects" or "Creating SysML Projects From
Templates").

2. In the main menu, select Options > Project.

3. The Project Options dialog will open.

4. Select the Symbols properties styles node (on the left-hand side), and then select OMG SysML
style in the Symbols properties styles panel.

5. Click the Make Default button.

54 Copyright © 2009-2015 No Magic, Inc.

Generic Procedures

6. Click OK. Your SysML project will use OMG SysML style as a default style.

X Project Options

B
Bl Code Engineering

- [0 Default (Defaulty
-2 Shapes

- Paths

-5 Diagram

I Stereotvpes
Bt~ [T ©OMiE SyshL style
Default model properties

i Code Generation
- gf? Rewerse

LJ-'—J Java Language Options
- gl C++ Language Options
- gl C# Language Options
- gl COREA I0L 3.0 languag
-] DOL Language Options

Symbols properties styles

Default (Defaulk)

OMG SysML style

Clone
Rename
Delete
Make Default
Apply

Impaort

Export

Cancel

Help

| R |

Figure 3 -- Setting symbol properties style

To apply OMG SysML style to an existing SysML project

The OMG SysML style is now a default style in your SysML project. However, you can apply such style only to a

D Ok WN -

. Open a SysML project.

. On the main menu, click Options > Project.
. The Project Options dialog will open.

. Select the Symbols properties styles node (on the left-hand).

. Select OMG SysML style, click Make Default > OK. (Skip steps 6 to 10.)
. If you do not see the OMG SysML style option in the Symbols properties styles panel, click the

Import button. The Open dialog opens.

7. Open the <md.install.dir>/templates/SysML directory and select OMG SysML style.stl.

8. Click Open.

9. The OMG SysML style option will appear in the Symbols properties styles panel.
10. Select it, click Make Default > OK.

SysML diagram. The following steps show you how to apply the style to a SysML diagram.

To apply OMG SysML style on a SysML diagram

1. Open the Project Options dialog.
2. Select OMG SysML style in the Symbols properties styles panel.

3. Click the Apply button. The Select Diagrams dialog opens.

4. Select a SysML diagram (you can select more than one diagram) and click OK.

Generic Procedures

5. Click the OK button in In the Project Options dialog.

Applying OMG SysML style to existing SysML diagrams might distort the
diagrams. Use the Layout feature on the main menu of MagicDraw to change
how diagram looks.

5.1.4 Using QUDV Model Library

QUDV Model Library is introduced in Annex C: Non-normative Extensions to OMG SysML Specifications 1.3. This
model library is designed in such a way that extensions to ISQ and S| can be represented, as well as any
alternative systems of quantities and units.

For more information, see "Model Library for Quantities, Units, Dimensions, and Values (QUDV)".

The SysML 1.4 QUDV library was improved to
e comply with International vocabulary of metrology (VIM 3rd edition)

e encode ISO/IEC 80000 definitions of base quantities and units to provide semantics for computer-
based dimensional analysis.

The ISO/IEC 80000 library, which is a collection of 14 standards, is available to use in new projects on demand
(from the shortcut menu, select Modules > Load Module).

Coverage of Normative Definitions
OMG SysML 1.4 1SO 80000 :

ISONEC 80000 Collection [] Complete Coverage

] Partial Coverage
part 1
ISO 80000-1:2009 : General SysML's QUWD D
part 2 ISO 80000-2:2009 : Mathematical signs & symbols [)
part 3 -
ISO 80000-3:2006 : Space and time D
part 4 -
ISO 80000-4:2006 : Mechanics D
part 5 -
ISO 80000-5:2007 : Thermodynamics D
part 6 -
IEC 80000-6:2008 : Electromagnetism D
part 7 ISO 80000-7:2008 : Light B
part 9 | |ISO 80000-9:2009 : Physical Chemistry and Molecular Physics [)
part 10 - -
ISO 80000-10:2009 : Atomic and nuclear physics D
rt13
P IEC 80000-13:2008 : Information science and technology D

Generic Procedures

5.1.5 Using Quick Search Dialog

To open the Quick Search dialog

1. Press Ctrl + Alt + F to open the Quick Search dialog.

Type Name:

Type text or wildcard (%, ?) to search E]

() Class or Interface () Any Classifier () Any Element () Diagram

2. Do one of the following:
e Enter the name of the element or diagram sought.

e Select the element or diagram from the drop down list box.

The diagram or the corresponding element opens in the Containment tree.

5.1.6 Using Structure Browser

The Structure browser allows you to browse for deep nested structures of the structure classifier in your model.
The property nodes, which are shown inside the property node (the parent property node), are the properties of
the classifier that type the parent property node. In the following figure, the node: diameter:m represents the
property: diameter:m of the classifier: Cylinder Liner and also the property: cylinderLiner : Cylinder Liner is
the property of the classifier: Engine.

- % Struckure

Struckure: X
EINER -
Bl Data A
- = Battery
- Brake System
- Cam Shaft
E-E Car
EII__tl +engine : Engine
E-CE +cylinderLiner : Cylinder Liner
E diameter : m
- CF +oylinderHead @ Cylinder Head
- CF +intakevalves : Intake Valve [8]
- CH +exhaustialves | Exhaust Valve [
- CFl +pistons : Piston [4]
- [El +starterMotar | Starter Makar
- CF +injeckionMozzles ; Injection Mozzl
- [CH +distributor : Diskribukor
- CF +sparkPlugs : Spark Plug [4]
- [H +camshaft : Cam Shaft b
< »

Figure 4 -- Structure browser

To open the Structure browser

e From the main menu, select Window >Structure.

Generic Procedures

5.1.6.1 Specific display options

There are two specific display options:

e Display as Plain List

e Show Inherited Structure

Display as Plain List

The classifiers of structure in your model will be normally displayed in a Package, Model, or Profile hierarchy. Use
the Display as Plain List option to show all classifiers of the structure in the model in the same level without
consideration of their owner. When you select the Display in Plain List option, the classifiers will be sorted by their

name.

- %'g Skructure

Skruckure =

EasaoRY

E-E1 HsvMadel

--F1 Explanations

B HUY Analysis

B~ HSUY Behavior

E HSLY Requirements
El-F HSUW Structure
B} HSUY Interfaces
- Accelerakar
E-E8 autarnativeDaomain
- =] BatteryPack

- BodySubsystern
- BrakePedal

El- = BrakeSubsystemn
- CAN_Bus

BB Chassissubsysten
- = Differential

- ElecPower

BB ElectricalPowerController v

E-E Data A

o % Struckure

Skruckure

= il

..... =] [Bodysubsystern]

----- =] [Brakesubsystem]

----- E] [ChassisSubsystem]

----- E] [ElectricMatorizeneratar]
- [Hybridsuy]

----- E] [InkeriorSubsystem]

----- E] [InternalCormbustionEngine]
----- E] [LightingSubsystem]
B-E [Powersubsystem]

-----] [Transmission]

----- E3 AccelerationEquation

----- E] Accelerator

----- B3 AeroCragEquation
B-E8 Automativelomain

..... E Bagoage

-----] Balanceweight

----- E] BatteryPack

= Black

----- E] BodySubsystem

Figure 5 -- Structure standard normal display

Figure 6 -- Structure Browser plain list display

Generic Procedures

Show Inherited Structure

The Structure browser can show the properties that are inherited from the generalization classifier.

bod [Model] Data [[]J
==hlack==
Block
valuwe s
SM D
==hlack== ==hlack== ==hlack== ==hlock==
[Cha=ssisSubsystem] [BodySubsystem] [BrakeSubsystem] [ElectricMotorGenerator]

Figure 7 -- Four specialization classifiers of blocks

- % Structure

Skruckture *

= BT

E-E [BodySubsystem] A
[45N ID

E-E [Brakesubsystem]

[45N ID

El-E [Chassissubsystemn]

[45N ID

E-E [ElectricMotorGeneratar]

I?u| +generatarEfficiency : Real

I?u| +motarEfficiency : Real

[45M: ID

E-E [Hybridsiv]

--I__r_l -l + [LightingSubsystermn] = |

--I__r_l -b i [BodySubsystemn] = b

--I__r_l -p : [Powersubsystem] = p

--I__r_l -t i [ChassisSubsyskem] =

--I__r_l -i 1 [Inkerioraubsystem] = i

-- [H -bk : [Brakesubsystem] = bk

I?u| +mpqg : Real

I?u| +pavloadZapacity : Real hat

Figure 8 -- Inherited Structures of blocks

5.1.7 Generating SysML reports

This section contains only introductory information about the Report Wizard and SysML report templates. For
detailed information on how to use the Report Wizard engine, see the MagicDraw Report Wizard user guide.

Generic Procedures

To create a report using a SysML report template

1. Select a report template and click Next in the Report Wizard dialog. The Select Report Data
pane will open. You can then select a predefined report data for the selected template (default =
Built-in).

2. You can modify the introductory information of a report, i.e. Variables (formerly called “User
Defined Fields”), by clicking the Variable button on the Select Report Data pane. The Variables
dialog will then display. You can then add/modify the variable of the report to be generated, such
as author, company name, company address, report purpose, report scope, etc. This information
will appear in the report generated.

3. Click OK to return to the Select Report Data pane. In the Select Report Data pane, click Next.
The Select Element Scope pane will then display.

4. In the Select Element Scope pane:
e Use the Add button to add an element selected in the element tree to the Selected
objects pane.

e Use the Add All button to add all elements directly owned by the element selected in
the element tree to the Selected objects pane.

e Use the Add Recursively button in to add all elements listed under the element
selected in the element tree to the Selected objects pane.

e Use the Remove button in to remove the selected element from the Selected objects
pane.

e Use the Remove All button in to remove all selected elements from the Selected
objects pane.

5. After the scope of the report is defined, click Next to proceed to the Output Options pane.

6. Specify the report file name, report file format, and image file format. It is recommended to use
RTF as the report file format.

7. Click Generate to create the report. Your report will be generated and automatically open in the
default document editor.

For more information about working with the Report Wizard, see the MagicDraw
ReportWizard UserGuide.pdf

5.1.8 Context-Specific Value Compartments

Context-Specific Value Compartments allows for
e creating different configurations for the same structure and display them directly in IBD diagram(s)
e having different values for the same part in different contexts
e assigning a different initial value to an inherited property

5.1.8.1 Progressive Reconfiguration

Progressive Reconfiguration enables SysML to handle a wide range of systems engineering configuration tasks.
Progressive Reconfiguration continuously applies the following values:

e Static class-level default values.

e Inherited Property-specific initial values.
e Redefined Property-specific initial values.
e Property-specific initial values.

Property-specific initial values are specific to the usage of a Block as a Part Property in a higher context (i.e.
another structured block or “assembly”). If there are many Part Properties of the same type, these Part Properties
may have different property-specific default values and will then be initialized differently.

Generic Procedures

Property-specific initial values are managed by the higher-context structured block, which owns the Part
Properties that initialize or configure their (possibly different) values on instantiation. For example, the generic
capacity of a FuelTank (not any particular one) is 40 liters (class-level default value). For a vehicle, however, the
generic capacity of its FuelTank is 46 liters. An abstract Vehicle block will thus configure its tank:FuelTank part
property by initializing it with a new capacity value. This can be done with Progressive Reconfiguration that will
assign the instance specification tank:FuelTank to the property tank:FuelTank of the Vehicle block.

bdd [Model] YWehicle] @‘u‘ehicle.hdd: HOWT O define property-specific default values (progrezzive canfiguration) U

<<block=> <=block>= =
VeJ:'E e = -tank FuelTank <<explanations =
a 1 e The static {clazs-level}
capacity L = 40 0funit = Litrejs- ~|default value wnill be
- { ; overridden

Tarty
tank : FuelTank [1] = tanl;.l'

In MD Sy skl you can drdlg n' drop <<initialization>> X

Instancespecifications fRom the browser parts
onto parts in an [BD 1o azsjgn
praperty specific defaultfinitial values = tank
B e <<initial values ==
<<initialises>=> tank : FuelTank

< <illuztration only == — - : -
capacity = "4&.0"unit = Litre}

A=

<< Rationale> > =]

The property-specific default wvalues {ak.a.
property specific initial values) for each
patt are defined using the Slots of an
InstanceSpecification of matching type.

== TIP==
You may optionally organize the
Instancespecifications that carry
your property-specific values in
a stereatyped Model.

The Magicdraw UML SysML plugin
structure-and-value HOWTO guide

F..
I=
7 Vehicle
< et

e

Figure 9 -- Progressive reconfiguration

For more information about Progressive Reconfiguration, see htip:/
[training.nomagic.com.

5.1.8.2 Deep Reconfiguration

Deep Reconfiguration enables you to configure deep-nested part(s) with context-specific value(s). Consider, for
example, the case of a truck reusing a complex WheelHubAssembly for three pairs of wheels, each with different
characteristics. Although the basic WheelHubAssembly might be suitable for a range of vehicles (a car, touring
car, and minivan), it is not nearly suitable for a large truck. Some of the WheelHubAssembly parts and subparts
required for a truck are larger and must be stronger to handle heavy loads. They include:

the diameter of the Tire, TireBead, and Rim will be larger.
the inflationPressure value of the WheelAssembly will be higher.

the LugBoltJoint will be subject to greater torque and boltTension.
the LugBoltThreadedHole will have larger lugBoltSize and threadSize.

In this case, Progressive Reconfiguration will fail because the new configuration requirements “cascade”
throughout the entire complex WheelHubAssembly from the outermost context to the deepest part. Since no

http://training.nomagic.com

Generic Procedures

Progressive Reconfiguration approach can handle this deep reconfiguration of complex assemblies, you need to
use Deep Reconfiguration.

You can start with a completely new TruckWheelHubAssembly that configures a completely new
TruckWheelAssembly, right down to a TruckLugBoltJoint.

However, you could use, instead, SysML PropertySpecificType strategy, which is a set of “on-the-fly” extensions
(subtypes) of each Block used in a complex assembly hierarchy, to afford a point of redefinition of the Part
Properties and their Value Properties as required. See the ‘PropertySpecificType* section in OMG SysML
specifications.

For more information about Deep Reconfiguration, see http://
training.nomagic.com.

5.1.8.3 Context-Specific Value Compartments

The purpose of Context-specific Value Compartments is to show various values as a result of a reconfigured
selected context. In the FuelTank example (see "Progressive Reconfiguration"), the capacity of a FuelTank in a
Vehicle context is reconfigured to 46 litres. In the WheelHubAssembly example, (see "Deep Reconfiguration"),
the diameter of the Tire, Tire Bead and Rim, the inflationPressure of the WheelAssembly, etc., in a Truck
context will be reconfigured to suit the truck.

This section contains the following subsections:

e Using Context-Specific Value Compartments

Displaying Context-Specific Value Compartments

Selecting the Context of Context-Specific Value Compartments

Customizing Context-Specific Value Compartment Display

Value Propagation

You can see an example of a Deep Reconfiguration project by
opening context specific values.mdzip in the <md.install.dir>/
samples/SysML directory.

Using Context-Specific Value Compartments

A Context-Specific Value Compartment is a part symbol compartment. Only part symbols can have Context-
Specific Value compartments. A Context-Specific Value compartment displays the values of the properties (parts)
reconfigured in a selected context (Progressive or Deep Reconfiguration).

An example of Progressive Reconfiguration is when the values of y and z of a Location are reconfigured to 7 in
the Thing context. Thus, the “values (Thing)” compartment in the l:Location part (in the Thing package) will
display 17 as the values of y and z.

An example of Deep Reconfiguration is when the value of x of a Location in the UniverseContext package is
reconfigured to 3 in the UniverseContext context. Thus, the “values (UniverseContext)” compartment in the
l:Location part (in the t1:Thing part in the UniverseContext package) will display 3 as the value of x. If
UniverseContext is selected, the value of z, instead of x, will be reconfigured to 2.

http://training.nomagic.com

Generic Procedures

bdd [Model] Data] [& BOD U

Lucatiun| Thing | Universe
==hlack== =<=hlack== =<hlock==
Location Thing Universe ZELS :?! e
US4 : Thing
values parts e parts L
% Real=10 I: Locstion =Tl o | 1 : Thing = U1 d =111
v Real=0 t2: Thing = L 12 d
z:Real=0 |
==hlock== \ ==hlack==
I : Location ! ==hlocks= ==hlock=> [U.t1.1': Location
P | t1: Thing t2: Thing RO e
¥ Real=0 . ; N
: “suzkEs pacts parts
y:Real =0 I Location =T I Location =T \
T Real=0 |
value s(Thing) | ==hlock== ==hlock== v
¥ = "1 . | I: Location I: Location ==lohes
I= vakes svalues L
| %:Real =0 %:Real =0
v Real=0 v Real=0 \
==hlocks= L | z:Real=0 z:Real=10 y
1.1: L ocation . valwes{liniverse) value silinive rre) ==hlock==
y="1" z="2" U.t2 : Thin
T
UniverseContext
) ==hlock== = ==hlack==
UniverseContext L ot UC. - Universe
parts 4 _
w: Universe = U u d 11 =Uc.utl
2=UCut2
=<=hlock== =
u: Universe ==hlock== ==hlock==
- .t : Thi ut2 : Thil
parts UC.u.t1 : Thing UC.ut2 : Thing
1 : Thing = 11 [=LCuttl [=LC.ut2l
12 : Thing = U2 "'
=<hlack== ==hlock==
=<block=> gy FHIlEElE UC.u.t1.1 : Location UC.ut2.l : Location
11 : Thing t2: Thing
lelgll '9': ||3||
parts pacts
| Lacation =T |': Location = T.1
==hlack== ==hlack==
I: Location I : Location
Jvalues Jvalwe s
¥ Real=0 . Real=0
v Real=0 y:Real=0
Z:Real=0 Z:Real=0
vale slimiverse Conte) valwe 5 [Universe Combexd)
= g Y=g

Figure 10 -- Block Definition Diagram

Displaying Context-Specific Value Compartments

You can display (or suppress) the Context-Specific Value Compartment of a part using either the Symbol

Properties dialog or the part shortcut menu.

Generic Procedures

To display a compartment using the Symbol Properties dialog

e In the Symbol(s) Properties dialog, set the value of the Suppress Context Specific Values
symbol property under the Context Specific Values group to false by clearing the check box.

To suppress a compartment using the Symbol Properties dialog

¢ In the Symbol(s) Properties dialog, set the value of the Suppress Context Specific Values
symbol property under the Context Specific Values group to true by selecting the check box.

Pro perties El

Part | = <PartProperty ==
2 = ot
=] F
Shove Operation Signature krue
Shove Operation Yisibility krue
Showw Operation Stereokype true
Showw Operation Properties true
Showe Operation Constrainks [] False
Showe Operation Parameter,.. [] False
Suppress Context-Specific ... krue
Context of Context-Specifi,.. = w
Suppress Context-Specific Yalues
Suppress Context-Specific Walues compartment
apply Skyle: |Defaul "
[] Make Default

Figure 11 -- Symbol Properties dialog - Suppress Context Specific Values

To display a compartment using the part shortcut menu

e On the shortcut menu, clear the Suppress Context Specific Values option under the Context
Specific Values group.

To suppress a compartment using the part shortcut menu

e On the shortcut menu, select the Suppress Context Specific Values option under the Context
Specific Values group.

Selecting the Context of Context-Specific Value Compartments
The properties’ values shown in the Context-Specific Value Compartment of a part and the compartment label will

change according to the selected context. For example, if the selected context is A then the compartment label will
be values (A).

To select a context using the shortcut menu

e From the selected part’s shortcut menu, select Context Specific Values > Context.

Generic Procedures

Customizing Context-Specific Value Compartment Display

You can display or hide the elements types in the Context-Specific Value Compartment of a part using either the
Symbol(s) Properties dialog or the part shortcut menu.

To display or hide element type using the Symbol(s) Properties dialog

1. Right-click the part and select the Symbol(s) Properties option.

2. Three display modes are available in the Symbol(s) Properties dialog:
e None: to hide types
o Name: to display the names of the element types

e Qualified Name: to display the qualified names of the element types

Part | <<PartProperty ==

8 @t By
Show Tagged values on Shape ”
Show Tagged Yalues Stere, .. krue
Show Qualified Mames for P... [] false
Shaow Default Yalue []false
Suppress Structure []false

Show Slak Type Mone
Symbal ID
Symbol Bounds

Marne
Cualified Mame

E=
Suppress (UML properties [] False
Suppress references [] False
Sumneace tmarke [Falea v’
Show slot Type
Show slok bypes in default values compartment
Apply Skyle: |Default W

[] Make Default

Figure 12 -- Symbol Properties dialog - Show Slot Type

To display or hide element type using the part shortcut menu

e From the selected part’s shortcut menu, select Show Slot Type, and then select a display mode.
Value Propagation

The Value Propagation mechanism enables values that are not overridden by the values from the selected context
in a Context-Specific Value Compartment to be displayed.

Assuming the property and the Value Propagation options are enabled, the value available in the next context will
be used to reconfigure the property if there is no value in the selected context to reconfigure the property.
However, if there is no value available in any context, the class-level default value will be displayed in the Context-
Specific Value Compartment, indicating that the property is not reconfigured at all.

See the following figure for an example of the Context-specific Values Compartments having the Value
Propagation enabled.

Generic Procedures

bdd [Model] Data[@ BOD U
Lucatiun| Thing | Universe
==hlock== ==hlock== ==hlock==
Locati Thi Uni S
ocation ing niverse U4 : Thin
values parts . parts L o
%:Real=0 I Location=T1 o — | t1 : Thing = LIt ‘E‘EFE; = Ut
vy Real=0 12 Thing = Li2 g
Z:Real=0 |
==hlock== | \ ==hlock==
I : Location =<hlock== ==hlock=> [L.t1.1: L ocation
- | 1 : Thing 12: Thing L N ——
¥ Real=0 : . Y
: :qusb;; paits paits
y o Real =0 I Location =T I Location =T \
7 Real=0 |
valkse s (Thing) | =zhlock== ==hlock== \
n= 91 . | I : Location I : Location Zalzhes
; _ g wvalwes vales X
| %1 Real =0 %:Real=0 \
v Real=0 v Real=0
=shlock== [L | r:Real=0 z:Real=0 Ay
I.l: Location 1 valie s{liniverse) vailie s{liniverse) ==hlock==
—nqn w=0 =0 U2 : Thin
y-" i = =
2: 1 I="2" I=||.1||
UniverseContext
==hlock== ==hlock== =
UniverseContext UC.A1 : Universe
parts d _
u : Universe = UC .U Gdfebb t1 = UCutt
=12 =LCut2
==hlock== =
u : Universe ““*’b|'3"3k*-“*—: ==hlock==
: A1 iTE rH i
parts UC.u.t1: Thing UC.u.t? : Thing
11 : Thing = 11 I=LUCutt [=LCut2l
t2: Thing = U 12 Ny
==hlock== ==hlock==
==biock=> g SHOE UC.u.t1.1 ; Location UC.u.t2. : Location
t1: Thing 12 : Thing —
K = 3 IF = ||3||
parts parts
|: Location =TI | Location =Tl
==hlock== ==hlock==
I : Location I: Location
values valkes
¥:.Real=0 ¥ Real=0
v:Real=0 v Real=0
z:Real=0 Z:Real=0
value s (Universe Conde x) vahue s limiverme Conbe)
w="3" x=10
l:lll = II1 n = II3II
Z o o Z o uqn

Figure 13 -- BDD value propagate

In the UniverseContext package, only the value of x of a Location is reconfigured to 3 in the UniverseContext
context. The values of y and z are not set by the selected context. Since the value propagation is enabled, the next

Generic Procedures

context, Universe, is considered. In the Universe context, the value of z is set to 2. However, the value of y is still

missing; therefore, the next context, Thing, is considered.

In the Thing context, the value of y is set to 1. Now, all attributes of the Location are set as follows:

e x=3
o y=1
e z=2

For more information about Value Propagation, see
http://training.nomagic.com.

To enable the value propagation mechanism

1. Click Options > Project on the main menu to open the Project Options dialog.
2. Select General project options > SysML.
3. Select the Propagate SysML Values check box and click OK.

5.1.9 Feature-based Compartments

Clear the Propagate SysML Values check box to disable the
Value Propagation mechanism.

SysML Plugin feature-based compartments allow you to display additional compartments in internal properties.

There are six feature-based compartments:
e :values
e :parts
e :references
e :constraints
e :properties (formerly :UML properties)
e :operations

o :flow properties

For any given property, these compartments will show information from the classifier of the property in conformity

with SysML specifications outlined in the ‘Compartment on Internal Properties’ section.

==hlack== =
box : BallBox
propeiies
stress : StressType
==hlock==
JEfeEmTes
L cubes : Cube [0.%]
propeties cylinders : Cylinder [0..%]
stresz [StressType
refeemes
cukes | Cube [0..%] halls ; Ball [0..%]
cylinders - Cylinder [O..%]
parts svalues
balls : Ball [0..4] cepth m=1.0
valkes height : m=1.0
depth:m=1.0 wiclth - m=1.0
Cﬁ::?t;ﬂ ::11 I:? onrstaits
: T consbmints violEq : WolumeEguation

wiolEq : WolumeEguation

testotress maxStress | Real 1. Boolean

aperations
testStressl maxSiress | Beal 1: Boolean

Figure 14 -- Compartments in block vs. Feature-based compartments in internal property

http://training.nomagic.com

Generic Procedures

For any property typed by a Block, feature-based compartments will contain the same information as that of the
compartments on the Block symbol, such as values, parts, references, constraints, UML properties, and
operations compartments.

5.1.9.1 Expanding and Suppressing Feature-based Compartments

You can expand or suppress feature-based compartments using either the Symbols Properties dialog or the
property shortcut menu.

Using the Symbol Properties Dialog of an Internal Property

To expand or suppress a feature-based compartments using the Symbol Properties dialog

1. Either right-click the property symbol and select Symbol(s) Properties or select the property and
press Alt + Enter. The Properties dialog opens.

2. In the SysML Internal Properties Compartments property group, do one of the following:
e Set the value of the corresponding symbol property to false by clearing the check box.

e Set the value of the corresponding symbol property to true by selecting the check box.

E Properties E|

Part | < <PartProperty ==
N
=
SUppress |properties []False
Suppress references []False
Suppress parks []False
Suppress valles []false
Suppress icanskrainks []False
Suppress :operations []False
W
Context-Specific ¥alues
Apply Skyle: |Defaulk A
[] Make Defaul:

Figure 15 -- Symbol Properties dialog - SysML internal properties compartments

5.1.9.2 Displaying Options in Feature-based Compartments

Elements displayed in the feature-based compartments of a property can be customized using the symbol
properties listed under SysML Internal Attributes and SysML Internal Operations in the Symbol(s) Properties
dialog of each property.

Generic Procedures

To customize the display of the elements in the feature-based compartments

e Select or clear any of the check boxes as shown in the following figure.

E Properties
Part | < <PartProperty == | SysML Inkernal Block Diagram

: e i
=k B ELE

Show Attribute Visibility []false
Showe Aktribuke Type krue
Shiow Bktribukbe Skereotype [] False
Show Aktribute Properties true
Show Aktribute Constraints []false
Shows &ttribube Default Yalus krue
=
Show Dperation Signature true
Shows Operation Yisibility []false
Show Operation Skereotype true
Shiow Operation Properties true
Show Cperation Constrainks []false
Show Operation Parameters Direction Kind []false

Show Attribute Type
Shows atbribuke bype ininternal properties compartments

Apply Style: |Default v |
[] Make Default

Figure 16 -- Symbol Properties dialog - SysML internal attributes and operations

5.1.10 NEW! Managing Element Groups

You can create and manage element groups, add, or remove group elements faster and more easily.

Generic Procedures

A
A
<o
A
ST
n A
i y zatis
m| ur.eqmrementn L _'* - Tc'] chiocks
Surveillance Camera Surveillance Camera
| Specification Enter
Symbol Properties Alt+Enter
Element Group * Create Group
Create Diagram ’ % Requirements
Go To 3

Figure 17 -- Add element to group

5.1.11 NEW! Displaying Rake icon on symbol

You can use rake icon for faster navigation in the model. The rake icon on the symbol indicates that the
appropriate element has an internal structure. Double-click the element to open the internal diagram. The rake
icon is shown by default on the symbol.

To hide rake icon

1. Right-click the symbol.
2. Select Symbol Properties from shortcut menu or press Alt+Enter.
3. Set the Show Rake Icon property value to false.

Generic Procedures

11
L% |
ground coffee in

ibd [System] Coffee Machine[Thermal Wiew J_J

Water

WCloffee

ciold
waterin

ground coffee in
!
L4 |

: Coffee Dispenser

L

: Brewing Group

Water

ilk)]
dizpersion
Screw

1]
L|_f‘r|:lth',r milk in

: Pressure Measuring F'Ell'tﬂ
i thermo-

svphon out

|1—|
energy in
Energyz
energy out
il
Water

E < =]

out ter in water in

put milk out

Figure 18 -- Using rake icon

5.1.12 Transferring mathematical expressions from MATLAB source
code into the model

MATLAB source code contains a functions declaration. The m-file is a text file containing a list of commands
written in MATLAB or Octave syntax. You can define functions and scripts in the m-file.

You can move the mathematical expressions from MATLAB source code into the model. Use the m-file to transfer
functions to a Constraint Block, Constraint Property, or Call Behavior Action.

Creation of elements from MATLAB source code is supported in the following diagrams:

e SysML Internal Block definition diagram

SysML Block Definition diagram

SysML Parametric diagram

SysML Activity diagram

UML Class diagram

UML Composite Structure diagram

Generic Procedures

e UML Activity diagram

The following figure illustrates the function declaration in m-file. It is for least-square fitting to find the slope (m)
and the y-intercept (b) of a straight-line equation from two given input parameters x and y. The constraint
expression is: [m, b] = linefit(x, y). The constraint parameters are: x, y, m, and b. After the function transfer into the
element, its type, property, and parameter are set automatically and are displayed on the element shape.

wconstraints
linefit

Consramnis

{[m,b] = linefit{=, v}

ParameElers
Constraint : Eg::
Block m: Real
b : Real

Transfer mathematical expressions into...

% linefit.m -
% Least-squares fit of data to_y=m*x+b * : Real aconstraints
funct'&un Em, b] = Tinefit(x, v) Constraint :' : linefit
Xx=x{ :); Property v : Real \b] = linefit{x,y)
y=y(:) — -
A =[x ones(size(x))]; m Real
c= (A * A(A" *)] o
m = c(l}i b : Real
EHZ c(2); Call Behavior]

Action

(: linefit]
b .-"I

m b

Figure 19 -- Creating Constraint Block, Constraint Property, or Call Behavior Action from MATLAB source code

The name of the created element is the same as the name of the function in the m-file. If the name of that element
already exists, the name duplicates with incremental number at the end of the name.

e Containment @ Linefit =

Containment 2 # X ""%Dm%
B i Q £ -
EE Data wconstraints wconstraints wconstraints
Bt Relations [linefit] linefit1 linefit2
@ consiraints Cconsiraints constrainis
--@ linefit1 {Im,b] = linefit(=x,v)} | [{Imb] = linefiti=,y)} | [{Im,B] = inefit(x, v}
@ linefit? parameiers paramerers paramerers
@ Linefit ®: Real ®: Real ®: Real
¥ . Real ¥ . Real v . Real
m: Real m : Real m : Real
b : Real b : Real b: Real

Figure 20 -- Element name duplication with incremental number

Generic Procedures

If m-file contains multiple functions declarations, only the first function is transfered into the model.

par [Block] Decoder | E Decoder Rule .]J

Z-Score : Real 7 : Real gonstraint:
:l Calculation : Constraint 1
% Real {= = normadist(z)}
Cumulative Frequency : Real :‘

function =X = normsdist{z)
cl= H
Ci= H
ci=— H
o= H
o5=— H
o= H
if =<
enid
y=10{1+ *ukz)
H=0. 54k —{exp{-z*zfi}folpr{yh{ci+yr{cI+yr{cdtyr{cS+yrcEl i) ;
enid

Figure 21 -- Transferring m-file with multiple functions declaration
Use one of the following ways to transfer the mathematical expressions from MATLAB source code into the
model:
e NEW! Drag the m-file directly to the diagram pane.

e Drag the m-file onto the already existing element shape (empty or full).

| The Activity diagram does not support this way of transferring
I%‘ WTE mathematical expressions.

e Use shortcut menu on the already existing element shape (empty or full).
| The Activity diagram does not support this way of transferring
@‘ . mathematical expressions.

NEW! Drag the m-file directly to the diagram pane to create one of the following:

e Constraint Block with its properties and parameters in the SysML Block Definition or UML Class
diagrams.

e Constraint Property and Constraint Block in the SysML Internal Block, SysML Parametric, or UML
Composite Structure diagrams. Constraint Block automatically is set as type for newly created
Constraint Property. The properties and parameters of Constraint Block are displayed on the
Constraint Property shape.

e Call Behavior Action with its pins and opaque in the SysML or UML Activity diagrams.

Drag the m-file onto the already existing element shape (empty or full) to set one of the following:

Diagram Specific Procedures

e Constraints and parameters for Constraint Block in the SysML Block Definition or UML Class
diagrams.

e Type for Constraint Property by creating new the Constraint Block in SysML Internal Block, SysML
Parametric, or UML Composite Structure diagrams. The properties and parameters of newly
created Constraint Block are displayed on the Constraint Property shape.

To transfer the mathematical expression into the Constraint Block or Constraint Property

1. In the Containment tree or on the diagram pane, select a Constraint Block or Constraint Property
(with set type).

2. From the shortcut menu, choose Tools > Create Expression from M-File. The Open file dialog
opens.

3. Select the m-file and click Open.
The constraints and parameters are set for Constraint Block.

Related diagrams
SysML Block Definition Diagram (BDD)
SysML Internal Block Diagram (IBD)
SysML Parametric Diagram

SysML Activity Diagram

Related external resources
“Class Diagram” in “Magic Draw UserManual.pdf”’
“Composite Structure Diagram” in “Magic Draw UserManual.pdf”
“Activity Diagram” in “Magic Draw UserManual.pdf”

e SysML Block Definition Diagram Procedures

e SysML Internal Block Diagram Procedures

e SysML Package Diagram Procedures

e SysML Parametric Diagram Procedures

e Requirements Diagram Procedures

e SysML Activity Diagram Procedures

e SysML Use Case Diagram Procedures

e SysML Sequence Diagram Procedures

5.2.1 SysML Block Definition Diagram Procedures

SysML Block Definition Diagram specific features include:

e Inserting a new SysML property

Inserting a new SysML diagram

Using SysML-Style compartments

Creating an association block

Creating a SysML Internal Block Diagram

Representing association roles as block properties

Diagram Specific Procedures

e NEW! Managing Interfaces of the Block

e NEW! Managing Block properties

5.2.1.1 Inserting a new SysML property

You can create a SysML property in the following ways:
e Block shortcut menu
e Block Smart Manipulator menu

To create a SysML property

1. Do one of the following:
e Select a block and from its shortcut menu, select Insert New SysML Property.

e On a selected block, click the Insert SysML property button.
2. Select a SysML property you want to create.

| r
zhlocks

E%ﬂﬂerﬁ'ack

Part Property L}
Reference Property

Value Property
Constraint Property

B B H E E

Flow Property

For more information on SysML properties, see the "SysML Block Definition Diagram (BDD)" section.

You can also use the Block shortcut menu to create a new UML property or UML
operation. For more information see MagicDraw UserManual.pdf.

The Block smart manipulator menu will not be displayed after you have created a new
stereotype as a subtype of a Block unless you save and restart your project first.

=

bdd [Model] Data[Untiled1]]

zsterectypes = zhlocks xdun{;& A
Block A — | E/
[Class] el

-isEncapsulated : Boolean [0..1] «
CustomBlockzg -
= M | Insert SysML Property |
—
El

zsterectypes .

CustomBlock ,'j._.'
[Class]

N

Diagram Specific Procedures

5.2.1.2 Inserting a new SysML diagram

To create a SysML diagram with a Block as its owner

e From the selected Block shortcut menu, select New Diagram and then select a diagram you want
to create.

5.2.1.3 Using SysML-Style compartments

SysML Specifications allow Blocks to have multiple compartments. SysML plugin provides five independent,
compatible block compartments:

e parts

references

values

constraints

property’s compartments

I hlocks
AutomotiveDomain PowerSubsystem
e ; _ corRiaints
drivingConditions : Environment =t
HSLY - Hybrid 5L parts
vehicleCargo | Baggage acl . Accelerator
: bp : BatteryPack
o pmperies hus : CAN_Bus
driver . Driver dif - Differartial
mairtainer ..Malntalner et ; Electrichotorzenerator{allocatedFrom = ad '}
PasSender : Fassenger epc : ElectricalPowerController{allocstedFrom = a3}

ft . FuelTank&zzemkbly
fuel=upply : Fuel

gl : Torgue
ke i1 : ElectricCurrent
FuelTankAssembly i2 : ElectricCurrent
pats ice : ImternalCombustionEngine{sllocatedFrom = a2}
fip . FuelPumgp pey . PowwerCortrolUnit{allocatedFrom = a1 }
fuelReturn : Fuel{direction = out } 1 : Torgue

fuelSupply © FuelireadOnly direction = in} 12 Torgue
tram : Transmizsion

efemntes
. Fuel BTEEACE S
bkp . BrakePedal [1]
fueFlowRate Rod e R e
fLslsicht R' | Ifsne s Fromttes] [1]
WSS S (=t riwe : Frontvvheel [1]

wheslHubAzsy WheslHubLssembly [2]

i

Figure 22 -- SysML block compartments

SysML Displayed Elements
Compartments
parts Part Properties: properties which are typed by Blocks or subtypes of Block,

except Constraint Block, having ‘composite’ aggregation kind.

Any Part property automatically becomes a reference property if aggregation
kind is set to “shared” or “none”.

Diagram Specific Procedures

SysML Displayed Elements
Compartments
references Shared Properties and Reference Properties are the properties typed by

Blocks or subtypes of Block, except Constraint Block, having ‘shared’ and
‘none’ aggregation kind, respectively.
There is no distinction between Shared Property and Reference Property.

values Value Properties: properties which are typed by Value Types or subtypes of
Value Type, always having ‘composite’ aggregation kind.
constraints Constraints and Constraint Properties. Constraint Properties: properties which

are typed by Constraint Blocks, or subtypes of Constraint Block, always
having ‘composite’ aggregation kind.
flow properties Flow Properties: properties which apply the «FlowProperty» stereotype.

properties All other properties which cannot be classified into the previous
compartments.

In addition, three SysML compartments are provided for displaying the Constraint Block properties: constraints,
others, and parameters’ compartments.

zoonstraints
PowerEquation

constains
ftp=wwhlprer-[Tl - et

pamaneters
swehilpt - Horsepseriunit = hp b
i: Real
Cd: Real
Cf : Real
- WWeEight{unit = [k}
tp - Horsepswriunit = hp}
W Weljunit = mph}

Figure 23 -- SysML constraint block compartments

SysML Displayed Elements
Compartments
constraints Constraints and Constraint Properties. Constraint Properties are properties

that are typed by Constraint Blocks, or subtypes of a Constraint Block, always
having ‘composite’ aggregation kind.
others All other properties that cannot be classified into the previous compartments.
parameters Constraint Parameters (reusing the ‘ports’ compartment of a Class).

5.2.1.4 Creating an association block

Participant properties will be created automatically when an Association Block is created between Blocks.

To create an Association Block in a Block Definition Diagram

1. Do one of the following:
e From the diagram panel, select Association Block. On the diagram pane, select a

Block to be used as the source of the to-be-created Association Block.

Diagram Specific Procedures

e Select the Association Block icon on the Smart Manipulator menu of a Block to be
used as the source of the Association Block.

2. Select a target of the Association Block by either selecting an existing Block on the diagram to be
used, or clicking on empty space on the diagram to create such target Block.

3. An Association Block will then be created between the source and target Blocks.
5.2.1.5 Creating a SysML Internal Block Diagram

To create a SysML Internal Block diagram for a Block

1. Select the Block symbol. The smart manipulator menu will appear.

2. Click the SysML Internal Block diagram button . The SysML Internal Block diagram will then
be created and owned by the selected block.

3. The SysML Internal Block diagram and the owner block will have the same name. The hyperlink to
the created diagram will be added to the selected block.

5.2.1.6 Representing association roles as block properties

When a Block is represented in the other BDD diagrams, all Association roles will be represented in the Block
properties compartment as normal properties. This representation option for Association roles is enabled by
default in all new SysML projects. This option, however, does not apply to any existing projects you may already
have.

ablocks
Car

oats
angine . Engine

Figure 24 -- Association Role is represented as normal property

5.2.1.7 Creating instances of blocks with complex structure

Creating instances for a complex model can be quite difficult, especially, since instances are frequently used in
SysML (unlike in UML), in particular when assembling systems. Starting with version 16.5, a new feature has been
included: Automatic Instantiation.

The purpose of this feature is to provide a wizard for automatic instantiation of the composite structures of a
system or system parts. Instances are widely used in simulation environments, for example, ParaMagic, and also
for defining different system configurations and test cases.

The following two samples will describe how to use the Automatic Instantiation feature.

To automatically instantiate a Block

1. Right-click a Block and select Tools > Create Instance on the shortcut menu. The Automatic
Instantiation Wizard opens.

2. Follow the steps of the wizard.

3. Click Finish to create the instance specifications and diagram. The Instance specifications will be
created and displayed in the chosen diagram.

Diagram Specific Procedures

bdd [Package] ICE Type A @ Instance of the InternalZombustionEngine]J
==hlock==
HSW.internalCombustionEngine : InternalCombustionEngine
fi= HSLLinternalComhbustionEngine fif1], HSWinternalComhbustionEngine.fif2],
HS L internalCombustionEngine fi[3], HE internalCombustionEngine fi[d]
fi1 = HSLLinternalCombustionEngine fi1
fiz = H5LlinternalComhbustionEngine fi2
fia = HELlLinternalComhbustionEngine fil
fi4 = HSLLinternalComhbustionEngine fi4
fra = HSLLinternalCombustionEngine fra
fuelReturn = H3U internalCombustionEngine fuelReturn
fuelSupply = HEU. internalCombustionEngine fuelSupply
iceEfficiency ="
==hlock== E ==hlock== E ==hlock==
HSU. HSL. HSL.
internalCombustionEng internalCombustionEng internalCom
ine.fuelReturn : Fuel ine.fuelSupply : Fuel bustionEngi
ne.fil:
fuelPressure="" fuelPressure =" Fuellnjector
pressure = "{unit= psi, pressure = "unit= psi, e
dimension = Pressure} dimension = Pressure} eIDEfEli
termperature = "{unit= °F, temperature = "{unit = °F,
dimension = Temperature} dimension = Temperature}
==hlock== ==hlock== ==hlock== ==hlock==
HSL. HSU. HSL. HSL.
internalCom imternalCom imernalCom internalCom
bustionEngi bustionEngi bustionEngi bustionEngi
nefn2: nefi3: nefid: ne.fi[1]:
Fuelinjector Fuellnjector Fuellnjector Fuelinjector
fuelDemand="" fuelDemand =" fuelDemand ="" fuelDemand=""
2ahlockss ==hlock== ==hlockss ==hlock==
HSU. HSL. HSU. w ﬂfc
internalCom internalCom internalCom W
bustionEngi bustionEngi bustionEngi w
nefi[?]: nefi[3]: nefi[4] : IEIE. IrF.:a:I
Fuellnjector Fuellnjector Fuellnjector (LR
fuelDemand =" fuelDemand =™ fuelDemand =™

Figure 25 -- Example of instance created by Automatic Instantiation Wizard

You can reassign some values, for example, if you like to use “SuperFuel” for “fuelReturn” instead, then reassign

the fuelReturn slot in the HSU.internalCombustionEngine : InternalCombustionEngine instance specification to
SuperFuel, a Fuel kind with a specific fuelPressure.

Diagram Specific Procedures

[N Instance Specification - H5U.internalCombustionEngine

'ﬁg 'E, = = Hiskary: :| = H5.internalCombustionEngine : HSUYModel: :HSUY Structure:: Internal. .. V|
=1 H5U.irternalCarmbustionEngine : HSUY | -Slots

[DocurnmentakionfHypetlinks o
e ¥ -y |Eo Property:
-[B Usage in Diagrams =L B o BElC:
b p T eE
(2] Deployed Artifacts E-E InternalCombustionEngine FuelReturn : Fuel | e]
- Sloks]:' crtl
: : YWalue
I"""Ef_ Elements -2} fi = HSW.internalCombustionEngin
Relations -3 fil = HSWinternalCombustionEngi
Tags _ -2} fiz = HSWinternalCombustionEngi
""" Constrainks -2} fi3 = HSWinternalCombustionEngi
-2} fi4 = HSWinternalCombustionEngi
- 1 fp: F5_ICE

- & Fr i FuelRegulakor
-2} fra = HSLLinternalCombustionEngi
- & Ft i FuelTankAssembly
- 1 FuelFitting : Fuel
e maRfelR eturn : Fuel

E Select Elements

E-F HSUY Structure F Selected objects:

"Itl HSUY Inkerfaces e mp-clected ohjects

B[ICE Type & ... 3 SuperFuel : HSUYMadel: :HSL
----- =1 HSU.inkernalc
----- =1 HaLlinternalC
----- =1 HaLlinternalC add
----- =1 HaLlinternalC
----- =1 HaLlinternalC
----- =1 HaLlinternalC
----- =1 HaLlinternalC
----- =1 HaLlinternalC

#dd Al

Add Recursively

Rernove

Remaove Al

E ----- =1 HsU.internalC

..... (= RSuperFusl
- Accelerator b
< | 2

Create Clone < il | >

Figure 26 -- Changing slot value of “fuelReturn” property

80 Copyright © 2009-2015 No Magic, Inc.

Diagram Specific Procedures

bdd [Package] ICE Type Al @ Instance of the InternalZombustionEngine]J

==hlock==

HSW.internalCombustionEngine : InternalCombustionEngine

fi = HSLLinternalComhbustionEngine fif1], HS internalComhbustionEngine fi[2],
HS L internalCambustionEngine fi[3], HS . internalCombustionEngine fi[d]

fi1 = HSLLinternalCombustionEngine fil
fiz = H5LlinternalComhbustionEngine fi2
fia = HSLlLinternalComhbustionEngine fid
fi4 = HELLinternalComhbustionEngine fi4
fra = H3LU internalCombustionEngine fra
fuelSupply = HEU internalCombustionEngine fuelSupply

termperature = "{unit= °F,

temperature =

"unit="F,

iceEfficiency ="
==hlock== = ==hlock== (] ==hlock==
HSLU. HSL.) HSL.

internalCombustionEng internalCombustionEn internalCom

ine.fuelReturn : Fuel ine.fuelsu : Fuel bustionEngi

nefil:

fuelFressure =" fuelPressure =" Fuellnjector
pressure = "{unit= psi, pressure ="{unit= pei, _—
dimension = Pressure} dimension = Pressure} e =

dimmension = Temperature} | | dirmension = Termperature} ==DEEE
SuperFuel : Fuel
fuelPressure ="30"
==hlock== ==hlock== ==hlock== ==hlock==
HSL. HSL. HSL. HSL.
internalCom imernalCom imternalCom internalCom
bustionEngi bustionEngi bustionEngi bustionEngi
nefn2: nefi3: ne.fid: ne.fi[1]:
Fuellnjector Fuellnjector Fuellnjector Fuelinjector
fuelDemand="" fuelDemand =" fuelDemand =" fuelDemand=""
==hlock== ==hlock== ==hlock== ==hlock==
HSU. HSL. HSU. w ﬂfc
internalCom internalCom internalCom W
bustionEngi bustionEngi bustionEngi w
ne.fi[2] : ne.fi[3]: ne.fi[4] : I':"E' IrF.:a:I
Fuelinjector Fuellnjector Fuellnjector (LRI
fuelDemand="" fuelDemand =" fuelDemand =""

Figure 27 -- Instances after changing slot value of “fuelReturn” property

Case Study:

To automatically instantiate a Block to be used with ParaMagic Plugin

1. Right-click a block and select Tools > Create Instance on the shortcut menu. The Automatic

Instantiation Wizard opens.

demonstrate how this feature works.

Note that ParaMagic sample projects are available in the
<md.install.dir>/samples/ParaMagic directory after you installed
ParaMagic Plugin. The Satellite.mdzip sample here is used to

Diagram Specific Procedures

2.In Step 1, select the required properties as shown in the following figure and set the value for each
value property of the instantiate classifier.

3. Click Next.

E Automatic Instantiation Wizard

{(#) 1. Select parts
i) 2. Select a package

3. Select a diagram

Select part(s) | propertyis) to
be instantiated, You can
change tvpe of the selected
patt (ko anokther subkype)
using the drop-down lisk bio
below the tree, & part with an
abstract bvpe cannot be
selected, unless changing iks
kype bo one of the subbvpe of
the abstract type, Default
walues, i existed, will be
used; new instance will not be
created For a part with
default value,

(press SHIFT and click to
seleck recursively)

E- [+] & SatelliteSystem [Satelite]

E} CE +Conl ; SatelitesContral [Satelite: :SateliteSystem)

0 +Pcon : SysML Prafile: :Blocks::Real [Satelite: :Conkral] $4alue = 2000

------ 0 +Weoon ¢ SywsML Profile:;Blocks: :Real [Satelite: Contral] {Yalue = 400+

= [+Insl : Sakellibe:: Instruments [Satelite:: SateliteSyvstem]

0 +Pins @ SysML Profile::Blocks: :Real [Satelite: : Instruments] {value = 2100}
0 +Wins : SysML Profile: :Blocks: :Real [Satelite: : Instruments] {Yalus = 2100}
B[] [-powerl : Satelite::PowerBalance [Satelite:: SatellibeSystem]

E}- CE +Prol : Satelite::Propulsion [Satelite:: SateliteSystam]

@ +Ppro : SyskL Profile: ;Blocks:: Real [Satellite: :Propulsion] {value = 4500%
0 +Wprao ¢ SwsML Profile: Blocks::Real [Satelite:: Propulsion] {4alue = 4300%
E}- CE +Psyl : Sakelite:: PowerSyskem [Satelibe:: Satelitesy skem]

@ +Power : SysML Profile: :Blocks::Real [Satellite: :PowerSystem] {Walue = 1000}

+ipsy ¢+ 3L Profile: Bl

0 +weight @ SvsML Profile: :Blocks:: Real [Satelite:: SateliteSystam]
B[] C3 -weightl : Satelite: WeightBalance [Satellite:: SatelliteSystem]

Type @ Real [SysML Profile: :Blocks]

N ™

< Back [Mext =][Finish H Cancel][Help]

Figure 28 -- Automatic Instantiation Wizard - Step 1.Select parts

4. In Step 2, create a new package named Satellitelnstance02 and click Next.

Diagram Specific Procedures

E Automatic Instantiation Wizard

() 1. Select parts Bl Data
E} E Satellite
() 2. Select a package L E Satellltelnstancetll

() 3. select a diagram i
------ E SatelllteSpemFlcatan

-- ParaMagic Profile
Select a package to hold E= .

instance specification(s) to be
created,

Create | Clone

[< Back. H Mextk = H Firish H Cancel H Help

Figure 29 -- Automatic Instantiation Wizard - Step 2.Select a package

5. In Step 3, type: Satinstance02BDD in the Type diagram name box, and select BDD as the
diagram type.

Diagram Specific Procedures

E Automatic Instantiation Wizard

() 1. Select parts Create a new diagram

() 2. Select a package [] Create link between instances

(%) 3. select a diagram
Type diagram name:

Check the "Create & new |SatInstanceDEBDD| |
diagram" checkbo if wou
want ko create a new Select diagram bype:

diagram to display

) T |S';.-'5ML Block Definition Diagram w |
instance specification(s),

Select owner For diagram:
Check the "Create link.
between instances" EIE Data
checkbao if wou also wank -1 Satelite
ko display link{s) amang E-C satelliteInstance0l
those instance Satellitelnstance0z
specificationts . B SatelliteSpecification
----- E] Contral
-----] Cx5_heading
----- E] Instruments
----- B3 PowerBalance
----- E] PowerSystem
----- E] Propulsion

..... E] satelliteSystem

[T T |

[

[Creake Owner] [Clone]

[Finish H Zancel][Help]

Figure 30 -- Automatic Instantiation Wizard - Step 3.Select a diagram

6. Click Finish. The Satlnstance02BDD diagram will be created.

Diagram Specific Procedures

bdd [Package] Satellitelnstance0z [@Instance of the SateliteSystem]J

zhlocks

satelliteSystem : SatelliteSystem
Zanl = satellite Systern.cont
Ins1 = satelliteSystem.ins1
Pro1 = satelliteSystem.prol
Pyl = satelliteSystem. psyl
Weight=""

zhlocks zhlocks:

satelliteSyst satelliteSyst

em.psyl em.coni:
PowerSyste Control

ool Pcon="2000"
Power="1000" Wizan ="400"
Wipsy ="3000"
zhlock: zhlock:

satelliteSyst satelliteSyst

em.insi : em.proi :
Instruments Propulsion
Pins="2100" Ppro="4200"
Wing="2100" Wpro ="4300"

Figure 31 -- Example of instance created with Automatic Instantiation Wizard with initialized slots

7. Right-click the Satellitelnstance02 package in the browser and select ParaMagic > Util > Create
CXI_heading.

8. Right-click again and select ParaMagic > Util > Add default causalities. The package will then
be ready for ParaMagic Plugin.

9. Right-click the Satellitelnstance02 package in the browser and select ParaMagic > Browse to
open the ParaMagic browser.

Diagram Specific Procedures

N ParaMagic(TM) 16.0 - Satellitelnstance02

Symbol Type Causality Walues
[] satelitesystem SatelliteTystem
El-4@ Conl Cantral
- Praon REAL undefined Z,000
[Woon REAL undefined 400
-4 Insl Instruments
- Pins REAL undefined Z,100
- [Wins REAL undefined Z,100
=@ Prol Propulsion
- Ppro REAL undefined 4,800
- Wpro REAL undefined 4,800
=l Psyl Powerayskem
- Power REAL undefined 1,000
-l Wpsy REAL undefined 3,000
----- @ ‘Weight REAL undefined T
[Expand ” Collapse all] [Reset ” Update ko SystL
rook | SatelliteSystem i
rame Local Oneway | Relation Ackive
weight 1 Y] Weight=Prol . Wpro+Ins1. Wins+Conl. Weoon+Psyl Wpsy
power 1 Y] Pswl.Power=Prol Ppro+Insl.Pins+Conl.Poon

Figure 32 -- ParaMagic browser

10. You can then use this browser to calculate the values of the properties. For more information on
how to use this browser, see ParaMagic User Manual.

For more information about using the Automatic Instantiation
Wizard, see Automatic Instantiation Wizard chapter in
MagicDraw UserManual.pdf.

5.2.1.8 SysML callout box

To create a callout box showing the attributes, constraints, and tag values of an element

1. Do one of the following:
e Create an anchored Note to the symbol of element on the diagram using the anchor
button on the smart manipulator.

e Create a Note by using the diagram toolbar and create anchor line to the symbol of
element.

2. Either:
e Click Edit compartment of anchored Note using the smart manipulator button on a
Note.

e Select the context menu items in Edit Compartment menu group.

Diagram Specific Procedures

zhlock: —
Block

Edit Compartment

Figure 33 -- Edit Compartment manipulator button

3. The Compartment Edit dialog will open.

E Compartment Edit

Element Properties Cu:unstraints| Tagged Yalues |

Al Selected:
isEncapsulated = krue allocatedFrom = Elementz, conneckarl

AllocatedTo = portl, parkl

Figure 34 -- Compartment Edit dialog

4. Select the element properties, constraints, and tagged values that you want to show in the callout
box. Then click OK to close the dialog.

5. Select Show Tagged Values on the context menu of Note symbol to show the selected tagged
values in the callout box.

N

allocatedFrom
zhlock=Element2
gronnectorsElermentd .connector

allocatedTo
shlocks | — |«atomicFlowPort=Element3::portt
Block «part:Elementd pari

Figure 35 -- Callout box with SysML callout style

6. You can customize the way the callout box looks using the Symbol Properties dialog of Note
symbol.

e SysML Callout Style symbol property can be used to switch between MagicDraw
standard callout style and the SysML callout style. By default, this property is set to
true for the SysML project. With SysML callout style, the element types (for example,
«block», «connectory, «atomicFlowPort», and «part») will be shown instead of the icon
of the tagged values which are the model elements.

Diagram Specific Procedures

o SysML Element Type symbol property can be used to show or hide the element types
in the callout box when it is displayed with SysML callout style.

E Symbol Properties
i hake [SysML Block Definition Ciagram |
Bl s =] = o= g
HTML Text krue »
Text Display Mode Do niok shiow
Show Line Between Compartments krue
Shows Documentation Skereotypes krue
Show Tagged VYalues Stereotypes krue
Show Cualified Mames For Properties Yalues [] False
Show Elernent Properties krue
Shows Stereokypes Shape Image and Texk
SysML Callout Skyle krue
SysML Element Type krue
Syrbal ID _16_8heta_17530432_1264070354546_490.,,
Symbal Bounds java,awk Reckangle[x=574,v=147,width=19... b
(Mame)
(Descripkion)
Apply Style: |DeFauIt Vl
[] Make Defaul:

Figure 36 -- Symbol Properties dialog of callout box
The new callout notation applies to all types of SysML diagrams.

Diagram Specific Procedures

5.2.1.9 NEW! Managing Interfaces of the Block

All owned and inherited Ports and their Interfaces of the selected Block are collected on the left of the Block
Specification window > Ports/Interfaces. Manage them by creating, redefining or deleting.

89

Block properties

WY Specification of Block Bean Hopp

The PortfInterfaces node contains a list of Block owned ports, Create or delete ports, Use
the ports spedification button to edit properties of a specific port.

ER O &

Ports/interfaces

] Bean Hopper

+-[B| Documentation/Hy
IUsage in Diagrams
+-[B Usage In
Constraints

+-[B Properties
Operations
Behaviors
Relations
Allocations
1| Instances

R EfPorts /Interfaces

[e2]2, [mj] =2 o2 ab

Direction Port Mame

E Proxy Port

coffee beans in

coffee beansout & iCoffee [Data...

Type Features

A inc: Coffee
E icoffee [Data...

A out ¢ : Coffes

Redefine Delete

Back Eorward Help

Figure 37 -- Block Specification window. Ports/ Interfaces node

Copyright © 2009-2015 No Magic, Inc.

Diagram Specific Procedures

Column name Description
Direction Direction prefix of the Port. The tilde symbol (~) appears before the
direction prefix when the Port is conjugated.
Port Name Name of the Port.
Port Type Type of the Port.
Type Features Features of the Port type
Button name Description
Opens the Specification window of the selected Port.

Create Opens the list with the available to create properties. Click to create the
Connector property, Part property, Reference property, Value property,
Constraint property, Flow property.

Redefine Duplicates the selected item and marks its name in ascending order.

Delete Removes the selected item from the list.

5.2.1.10 NEW! Managing Block properties

All owned and inherited Block properties are collected on the left of the Block Specification window > Properties.
Block properties are grouped as in the Block compartments. Manage them by creating, redefining or deleting
directly in the General Specification pane.

Diagram Specific Procedures

WY Specification of Block

Block properties
The Properties node contains a list of Block properties. Create or delete properties. Use the
properties specification button to edit properties of a spedific attribute,

ESR O £ Properties
E] FuelTankAssembly Bla; o o

SR i B B abe
+-[B| Documentation/Hyperlinks =lE B v oE

Usage in Diagrams Mame Type Default Value Owner
+] Usage In
Constraints

B Flow Properties

+1-|B] Ports/Interfaces in fuelSupply &5 Fuel [H5... K FuelTankAssembly...

out fuelReturn & Fuel [H5... E FuelTankassembly. ..
Dpera_tu::ns : | & Part Properties
Behaviors g O3 Fuek 3 FueTanka "
4| Relations : fp LelFump. .. uelTankAssembly. ..
5 Allocations B Reference Properties
4| Instances E] Fuel [Hs... E] FuslTankAssembly. ..

3

B value Properties
fuelFlowRate [@ Real [5ys... E] FuelTankAssembly. ..

fueleight @ Real [Sys...] FuelTankAssembly. ..

Up Redefine Delete

[Close] [Help

Figure 38 -- Block Specification window. Properties node

Column name Description
Name Property name.
Type Property type.
Default Value Property default value.
Owner Block name that contains the current property.
Button name Description
- Opens the Specification window of the selected property.
Ed
Create Opens the list with the available to create properties. Click to create the

Connector property, Part property, Reference property, Value property,
Constraint property, Flow property.

Redefine Duplicates the selected item and marks its name in ascending order.

Diagram Specific Procedures

Button name

Delete

Description

Removes the selected item from the list.

5.2.2 SysML Internal Block Diagram Procedures

The SysML IBD specific features include:

Creating Ports
Displaying Parts

Displaying Ports

NEW! Displaying Direction Prefixes of Proxy and Full Ports

NEW! Displaying Combined Direction on Proxy Port

NEW! Displaying Direction Prefixes of Flow Property

Using Edit Compartment
Show Default Value and Show Slot Type

Provided/Required Interfaces

NEW! Managing Interfaces of the Proxy Port

Create Directed Features and Specify Feature Directions

Displaying Structures of Blocks in Compartments and IBDs

5.2.2.1 Creating Ports

You can easily create full and proxy ports.

A full port is a part on a boundary. You can now easily convert your parts into full ports by dragging them to the
diagram frame. All ports, connectors, other information, including the layout will remain unchanged.

To convert a part to the full port

1. Select a part and drag it to the diagram frame.
2. When the diagram frame is highlighted, release the part. The full port is created on the diagram

frame.

When the full port is created on the diagram frame, you cannot drag
it back (except Undo the conversion).

Diagram Specific Procedures

ibd [Block] PC[SBC USE]J

aproxys aproxys

: Hotherboard[b p1:USB p2:USH [:]

\4

ibd [Block] PC[SBC USB |J

XProxys

: Motherboard [i p1:USH

D_rag part to
diagram frame
", aproxys
 HDD]p?:- C1SB
Y
HProxyn WProAy»
p2 : UsB w fulls p3: USB
- HDD

Figure 39 -- Part converted to full port

To create a proxy port

1. Select a part or a port on the part and from the smart manipulator toolbar select Connector.
2. Attach a connector to any part or diagram frame. The appropriate port is created.

ibd [Block] PC[SBC USB]

CProxys «proxys

X ProXys

: Motherboard ['jm :UsB p2:UsB [::'

* HDD [:]pS: usB
&

\4

Attach connector to
diagram frame

ibd [Block] PC[SBC USB |J

aproxys» «proxys

& PrOXY s & PrOXY s

: Motherboard [‘JF” :USB p2:USB [:]

: HDD

[:]pS cUSB [] pd: USB

Figure 40 -- Creating proxy port

5.2.2.2 Displaying Parts

If you have already defined the parts (properties) of a Block, you can then display the parts on any IBD, having the

Block as its context.

Diagram Specific Procedures

To display parts in IBD

1. Right-click IBD and select Related Elements > Display Parts. All the parts selected will be listed
in the Select Parts dialog.

E Select Parts

i Seleck Parts |

----- [] & +constraint property : Canstraint Block [Elock]
----- [] 08 +part property : BLOCK [Elock]

----- [] @ +reference property ; BLOCK [Elock]

----- [] &= +shared praperty : BLOCK [Block]

----- [] @ +UML property : Class [Block]

----- [] 0@ +value property : YalueType [Elock]

Figure 41 -- Select Parts dialog

2. Select parts and click OK to show the selected parts on the IBD.

5.2.2.3 Displaying Ports

If you have already defined the port(s) / flow port(s) of a Block, you can then display the port(s) / flow port(s) / full
port(s) / proxy port(s) on any part typed by the Block.

To display ports / flow ports on a part on an IBD

1. Do one of the following:
o Select Related Elements. If the type (classifier) of the part owns at least one port/flow
port, the Display Ports option will be enabled for you to select. Select this option.

e Click the Display Ports icon on the Smart Manipulator menu of the part.

s

/ F

iu|

==hlock== [E
partib : Block3 B S

= - B

Figure 42 -- Property smart manipulator menu to display ports

2. All ports (including flow ports) will then be listed in the Select Ports dialog.
3. Click OK to view the selected (checked) port(s) on the part symbol.

Diagram Specific Procedures

- B +i: Partt [Elocks]
b B +a: Parkz [Blocks]

Figure 43 -- Select Ports dialog

4. The selected ports will then be displayed on the part symbol.
i: Portl o Part2

==hlock==
partib : Block3

5.2.2.4 NEW! Displaying Direction Prefixes of Proxy and Full Ports
Directions of Proxy and Full Ports can be identified with help of direction prefixes.

The Proxy Port direction prefixes are displayed:
e On Blocks (1). To hide the Proxy Port direction prefixes on the Block, set the Show Proxy Port
Direction in Compartment property value to false in the Symbol Properties dialog of that Block.

The Proxy and Full Port direction prefixes are displayed:

e In the Model Browser (2).

e On the Port shape when its name is displayed inside the shape (3). For this, open the Symbol
Properties dialog of the Proxy or Full Port and select Name and Type Labels Inside or All
Labels Inside as the Position of Labels property value. To hide the direction prefix on the Port
shape, set the Show Direction Prefix Inside Port property value to false in the Symbol

Properties dialog of that Port.
e On the ToolTip which opens when you move the pointer over the Proxy or Full Port or their names

(4).

Diagram Specific Procedures

e Contain.. | & Structure | % Diagrams Water Heating Element x

Containment " B M ‘_ _’

B i Q L -

EIEI Data ibd [Block] Water Heating Element [Water Heating Element
£ Data

-] 00-User MNeeds
@ 01-Conceptual Model =
El-Ex 02-Functional Model _ s - Steam | 5
EI@ 03-Physical Model Milk

--E 34-Interfaces

--@ 31-Kaffeeautomat

--@ 32-Brewing Group E-51
E}@ 33-Water Heating Element
£ Steam Dispenser

E- [0 +steamMass : Real [1] =0

steam : Steam Dispenser

properies

_ ready ready _
B0 +steamMassRequired @ Re steam adjust |pull-a-shot

E- 0 +steamMassPersecond @ R

- [E in +8 : Data::03-Physical M
2 T lin]+steam in : Data::03-Ph
- A in +milkin : Data::03-FPhys
- A out Hrothy milk out : ~Da
- A in +steam adjust : Data::0
r_+pull-a-shot : Data::03 |

Adjust Stea Pull-a-shot

steam adjust | pull-a-shot

bdd [Model] 33-Water Heating Element[Steam Disp&nserlj

ablocks
Steam Dispenser

proxy pors

team in : iSteam

in milk in ;- ildilk

out frothy milk out : ~iMilk

in steam adjust . iBdjustSteam

in pull-a-ghot : iPlug

out openSteamvalve : iDpenSteamialve
out milk ready : iMilkReady

Figure 44 -- Places of displaying Proxy or Full Port’s direction prefixes
5.2.2.5 NEW! Displaying Combined Direction on Proxy Port

Combined direction consists of all owned and inherited flow properties and directed features of the Proxy Port.
The flow properties direction are shown by default on the Proxy Port shape. To include directed features into
combined direction of the Proxy Port set the Include Directed Features into Combined Direction of Proxy Port
property value to true in the Project Options dialog.

If all features have direction "out" or "provided", the combined direction is "out". If all features have direction "in" or
"required”, the combined direction is "in". Otherwise the direction is "inout".

Diagram Specific Procedures

sinterfaceBlocks

Image
HPTOXY % R —
: Image Detectol pl : Image — ﬂqu e
_al putlflow2

Dperaions
operation1(}

pperationz(}

Figure 45 -- Proxy Port’s combined direction including directed features

5.2.2.6 NEW! Displaying Direction Prefixes of Flow Property

Directions of flow property can be identified with help of direction prefixes.
The flow property direction prefixes are displayed:

e On Parts (1). To hide flow property direction prefix on the Part, set the Show Flow Property
Direction in Compartment property value to true in the Symbol Properties dialog of that Part.
e In the Model Browser (2).

% Contain.. | B Structure |) Diagrams Water Heating Element
Containment [4 (_ _)
B ir Q L -
EIEI Data ibd [Block] Water Heating Element [Water Heating Element
E}EI Data
E 00-User Needs steam : Steam Dispenser
@ 01-Conceptual Model ——
B~ 02-Functional Model mls - Steam
Bl 03-Physical Model
B-E3 34Hnterfaces [] steam in
B[31-+Kaffecautomat
B 32-Brewing Group E-561 k out roth |:—~:|7
:) I OUT milk qut
E-E 33-Water Heating Element . open
:] Milk Ready Steam
E-E steam Dispenser Valve
G-C0 +steamMass : Real [1] =0 [+1 [+]
--I?ul +steamMassRequired : Re steam adjust |pull-a-shot
[0 +steamMassPerSecond : R Adjust Steamdh Pull-a-shot
o
steam adjust | pull-a-shot
R T

Figure 46 -- Places of displaying flow property’s direction prefixes

5.2.2.7 Using Edit Compartment

You can customize elements to be displayed in the various compartments of a part. Such compartments include
Constraints, Tagged Values, Default Value, Structure, and many more.

To customize a compartment of a part

1. Right-click a part and select Edit Compartment on the shortcut menu.

Diagram Specific Procedures

2. Select a compartment to be customized. The Compartment Edit dialog will open.

3. In the Compartment Edit dialog, move an element from the All: to the Selected: box to display
the element.

4. Click OK when done.

X Compartment Edit

Conskrainks Tagged Yalues Default Yalue
Struckure | ‘properties references parks walues rconskrainks operations
all: Selected:
+conskraint @ Constraink Block,
+part : Block,

+value : m

Figure 47 -- Compartment Edit dialog

5.2.2.8 Show Default Value and Show Slot Type

Use Show Default Value to display the default value of a part. If the default value is an Instance Specification, the
defaultValue compartment containing the Instance Specification slots will be displayed on the part instead. In this
case, you can use Show Slot Type to display the types of the slots) in the compartment.

Show Default Value

To display the default value of a part (property)

1. Right-click a part or property and select Show Default Value (if it already has a default value) on
the shortcut menu.

If the property has no default value, drag an instance with slot(s) to the property symbol. The
instance will then be assigned as the default value for this property, and its slots with values
will be displayed inside the property symbol.

2. The default value of the property will be displayed. If the default value is an Instance Specification,
the defaultValue compartment containing the Instance Specification slot(s) will be displayed
instead.

==hlack==
reference property : Block

|
|
==hlock==

part property : Block I
defaultValue |
|

|

|

value property="321"
reference property = instance
part property = instance

Figure 48 -- defaultValue compartment

Diagram Specific Procedures

Show Slot Type

Use the Show Slot Type shortcut menu to display the slot types in the defaultValue compartment of a property,
having an Instance Specification as its default value:

To display the slot types of a part

1. Right-click a property and select Show Slot Type on the shortcut menu. Three Show Slot Type
options will be available on the shortcut menu
e None (no type slot will be displayed)

e Name
e Qualified Name

2. If you select Name or Qualified Name, the slot types will be displayed.

==hlack==
reference property : BLOCK

==hlock== =
part : Block

|
|
|
defaultValue |
|
|
|

reference property BLOCK = instance

I

|

|

I | value property : valueType ="321"
|

| part property - ELOCK = instance

Figure 49 -- defaultValue compartment with slot types

5.2.2.9 Provided/Required Interfaces

Provided/Required Interfaces help identify compatible ports that can be connected together in an IBD. On a port,
you can

e create a new Provided/Required Interface using the port specification dialog, or

e display an existing Provided/Required Interface using the port shortcut menu.

Creating New Provided/Required Interfaces Using the Port Specification Dialog

To create new Provided/Required Interface of a port

1. Do one of the following:
e Right-click a port to open its shortcut menu, and then select Specification to open the
Specification dialog. Then, select the Provided/Required Interfaces group to open
the Provided/Required Interfaced pane.

/8

d -Ilfferentlal
tram B m

| Frovided/Reguirad interfacesl
T T

Figure 50 -- Port Smart Manipulator Menu - Provided/Required interfaces

e Click a port in a diagram to open its smart manipulator menu, and then select the
Provided/Required interfaces icon to open the Provided/Required Interfaced pane.

Diagram Specific Procedures

E Port - trsm rz
E % = = History :| B +brsm [HIUYMadel: :HSUY Struckure: PowerConkrall, V|
B Hhrsm Praovided/Required InkerFaces

BB DocumentationHyperlinks
Isage in Diagrams
o E\Fr ovidedRequired Interfaces
Template Parameters

Inner Elements

Relations

Tags

z Constraints

----- Language Properties

= H el :
§ e

Close

Back:

Required

Marne Type |
=
I_ICECmds Provided
i) Add Remove
Provided
Forvard

]

Figure 51 -- Port Specification window, Provided/Required Interfaces group

Only typed ports can realize / use interfaces.

2. Click Add and then select either Provided or Required.

Case Study #1:

If the port is typed, the Select Interface dialog will open. You can either:

e select any of the existing interfaces (and flow specifications) to be used as the

Provided / Required Interface of the port, or

e click Create to create a new interface. The interface specification dialog will then be
displayed, prompting you to type in its name. The new interface will then be used as

the Provided / Required Interface of the port.

Diagram Specific Procedures

E Select Interface

Model |

| H_-'F/ FEELINS g]
B} HSUY Interfaces =

----- £ F5_TRSM
----- E FuelFlaw B
----- 9 FuelTankFitting
- I_TCECmds

B

B

Bl T_IEPCCrd

Bl I_IEPCData

B0 I_TRSMCrnd

Bl I_TRSMDatka

----- B 1Fs_EPC

----- B 1Fs_ICE

----- B IF5_TRSM

----- = ICEDatka v

’ i Create] [Clone]

Figure 52 -- Select Interface dialog

Case Study #2:

If the port is not typed, the Select Port Type menu will then display.

[X select Port Type r5_<| [Select Port Type [E|

Part bype must be specified!

Paort bype musk be specified!
Please select one of the Following options:

Please select one of the Following options:

() Set provided interface as port byvpe

(%) Create "dummy” port bype automatically

(%) Create "dummy” port bype autamatically (" Select or create port bype manually

Figure 54 -- Select Port Type menu - Required
Interface

() Select or create port bype manually

Figure 53 -- Select Port Type menu - Provided
Interface

You can then select:

e (For Provided Interface only) Set provided interface as port type. The Select
Interface dialog will then open. In the dialog, you can either choose an existing

interface or create a new one, to be used as the Provided Interface and the type of the
port.

Diagram Specific Procedures

e Create “dummy” port type automatically. The Select Interface dialog will then
open. In the dialog, you can either choose an existing interface or create a new one, to
be used as the Provided or Required Interface of the port. In addition, a dummy
classifier, realizing (for Provided) or using (for Required) the interface, will be
automatically created and used as the type of the port.

o Select or create port type manually. The Select Port Type dialog will then open. You
can then choose a classifier to be used as the type of the port. Click OK, the Select
Interface dialog will then open. In the dialog, you can either choose an existing
interface or create a new one, to be used as the Provided or Required Interface of the
port. In addition, a Realization (or Usage) dependency will be automatically created
from the port type to the Provided (or Required) Interface of the port.

E Select Port Type El
Model

Search By Mame:

I]

B8 F5_ICE

-8 F5_TRSM
B8 FuelFlow
-8 FuelTankFitting
Bl 1CECmds
B I_ICEData
B 1_IEPCCmd
B I_IEPCData
B0 I_TRSMCmd
E- 1_TRSMData

------ 5 1Fs_EPC

L IFS_ICE

L IFS_TRSM

[0 ICEData
% Figure B.20 Interfaces Twping Standardr

Figure B.21 Intially Defining Flow Specifi
T Arralar sbar v

4 »

[Create] [Clone]

Figure 55 -- Select Port Type dialog for Provided / Required interface

Displaying Existing Provided/Required Interfaces

To display the existing Provided/Required Interface of a port

1. Right-click a port to open its shortcut menu and do one of the following:
o select Show Required Interfaces or Show Provided Interfaces

o select Related Elements > Display Provided/Required Interfaces

2. The Required / Provided Interfaces will be displayed on the port, in the form of ball-socket
(lollipop) notation.

Diagram Specific Procedures

ibd [Elock] &zzembly [.&ssemhly]J

==hlock==
: Part1

==hlock==
: Part2

Figure 56 -- IBD with required and provided interfaces displayed

bdd [Model] Dats [@Eﬁall and Socket]J
==hlock==
Assembly
|”:I;|‘:
i
==hlock== ==hlock==
Part1 | - port “Port2 | parta
| L
_;'f:;J
i2

Figure 57 -- BDD with parts, ports, and interfaces

Diagram Specific Procedures

5.2.2.10 NEW! Managing Interfaces of the Proxy Port

The detailed information about Proxy Port interface is collected on the left of the Port Specification window>
Interface Block Properties.

- I
LY Specification of Proxy Port coffee beans g

Proxy Port properties

The Properties node contains a list of Proxy Port properties, Create or delete properties. Use the
properties spedfication button to edit properties of a spedfic attribute.

74

E % 2 Interface Block Properties

B out coffee.bea.ns out ; ~iCoffee 'Eléi @ "
1| Usage in Diagrams = - =

1| Connectors
4| Provided/Required Interfaces |-)
Inner Elements B Flow Properties
Relations : in ¢ B coffee [Data::0... E icoffee [Data::03
-|&| Tags
Constraints

=B

1| 1] [»

MName Type Default Value Owner

Redefine Delete

Figure 58 -- Proxy Port Specification window. Interface Block Properties Node

Column name Description

Name Compartment name.

Type Compartment type.

Default Value Use to set the value manually.

Owner Interface Block which is the owner of the selected Proxy Port.

Button name Description

Opens the Specification window of the compartment

Up Move item to upper position in the list. The items are automatically
renumbered after moving.

Down Move item to lower position in the list. The items are automatically
renumbered after moving.

Create Opens the list with the available to create properties. Click to create the
Value property, Flow property or Reference property.

Redefine Duplicates the selected item and marks its name in ascending order.

Delete Removes the selected item from the list.

Diagram Specific Procedures

5.2.2.11 Create Directed Features and Specify Feature Directions

The directed feature is a Feature element that applies the «DirectedFeature» stereotype. MagicDraw SysML
plugin provides the diagram context menu to specify the feature direction of the selected feature. When you set
the feature direction to the selected feature, it will apply the «DirectedFeature» stereotype automatically.

To specify a feature direction

1. Right-click a feature’s symbols owned by a block such as part, attribute, operation, and signal
reception.
2. Go to Feature Direction and select one of the directions of the feature.

5.2.2.12 Displaying Structures of Blocks in Compartments and IBDs

Composite Structure diagrams will not let you display the already-defined internal structures of Blocks reused as
parts in other structures (deep-nested structures). The same limitation exists when you need to modify or extend
existing structures in subtypes. Composite Structure diagrams will only let you display:

e Parts
Nested parts

Ports on the frame

Ports on every part

Paths for every part and port

Nested parts can be displayed with the dot notation in addition to using structure compartment. In the Display
Parts dialog, when only the nested part property of a class is selected, that class with the nested part property
selected will be displayed with the name of the class that contains the nested part property inside and the name of
the nested part, separated from each other with the dot notation.

Diagram Specific Procedures

tA

Displaying 9¥sML parts and deep-nested parts on shapes b
Select parts wou want to display on the shape, and ensure that their checkboxes are T
Fully selected {with black checkmarks), To display deep-nested parts in SvsML dok :
notation, simply select the deep-nested parts. Click OK when wou are done. c:A i

o || as
= ncapsulated Centrifugal Pump -

[CH +bearings : Tips and Tricks::Elocks: :Bearing [3] [Tips and Tricks::Blocks::Centrifugal Pi
-~ [] 08 +casting : Tips and Tricks::Blacks::Casting [Tips and Tricks: :Blocks: : Centrifugal Pump]
EF- (A +discharge : Tips and Tricks: :Elocks:: Discharge Mozzle [Tips and Tricks::Elocks: :Zentril
b 0 +diameter : m [Tips and Tricks: :Blocks::Discharge Mozzle]

- [] @ +efficiencyEquation : Tips and Tricks::Blocks: :Pump Efficiency [Tips and Tricks: :Blacks:
- [] @ +flewingFluid : Tips and Tricks::Blacks: :Fluid [Tips and Tricks::Blocks: :Centrifugal Pumg
CH +impeller ; Tips and Tricks::Blocks:: Impeller [Tips and Tricks::Blocks:: Centrifugal Pump’
-~ [[] 08 Hubricant : Tips and Tricks::Blocks: :Lubricant [Tips and Tricks::Blocks:: Centrifugal Pun
- [] & +oilrings : Tips and Tricks::Blocks:: Cil Ring [2] [Tips and Tricks: :Blocks: :Centrifugal Pur
~ [[] 08 +seal : Tips and Tricks::Blocks::Seal [Tips and Tricks::Blocks: : Centrifugal Pump]

-~ [[] 08 +shaft : Tips and Tricks::Blacks: :Shaft [Tips and Tricks: :Blocks:: Centrifugal Pump]

viBlocks: 1Suckion Mozzle [Tips and Tricks::Blocks: : Cenkrifugal
nd Tricks:;Blocks::Suction Mozzle] —

CH +suction : Tips and
o OO +diameter : m[Ti
- [] O +vonte
£ l :

ips and Tricks: :Elocks::Volute [Tips and Tricks: :Blacks:: Centrifugal Pump] o

[Clear all H Select all

[(] 4 l [Zancel] [Help

ibd [Block] Encapsulated Centrifugal Pump [Encapsulated Centrifugal Pump lJ

bearings : Bearing [3]

discharge : ~Fluid Flow lf_l;lischﬂrge : Discharge Hozzle
_al

diameter : m

impeller : Impeller The nested part
displayed with
dot notation

suctionsdiameter : m |

Dot notation

Figure 59 -- Nested part property selected and shown with its class and dot notation

Thus, to redisplay an internal structure in another structure, you have to recreate the internal structure manually.
The graphical layout must also be applied manually, making it a time-consuming activity.

Diagram Specific Procedures

With the Display Internal Structure feature you can copy and paste (display) an existing structure diagram
defining a Block (Class) either in:

e The structure compartment of that Block, a subtype of that Block, a part typed by that Block, or a
part typed by a subtype of that Block, or

e Another diagram defining either a subtype of that Block or that Block itself.

With this feature, you can now display the already-defined internal structures of Blocks, reused as parts in other
structures (deep nested structures).

To redisplay a Block structure, already-defined in, at least, one structure diagram

1. Suppose there is the FrontWheelsAssembly IBD, having the FrontWheelsAssembly block as
its context.

2. Right-click the property and select Related Elements > Display Internal Structure from the
shortcut menu. Each IBD having either the type or a supertype of the type of the property as its
context will be available for you to select. For example, in the following figure, the
FrontWheelsAssembly IBD is available. Select it to display the structure of
FrontWheelsAssembly block in the property.

==hlack== &
fromtWheelsAssembly : FrontWheelsAssembly

leftyheel | Fromtyhesl
______ Py

" ifw : FrontWheel [1] — [L
' |
[|

leftHalf=haft

-
. ’ . *
] tz'Tf"rq“E spline 1 -T":':que {J_Elﬂ dif : Differential

tram
H

rightHalf=haft

rfw : FrontWheel [1]

rightvhesl © FromtWheel
' —— []

Figure 60 -- Sample of structure displayed in property

3.You can also display the structure in a new blank IBD, having the FrontWheelsAssembly block or
a subtype of the FrontWheelsAssembly block as its context, using the IBD shortcut menu.

Diagram Specific Procedures

ibd [Elock] MadifiedFyya [B ModifiedPyys,]J

" tw s FruthmTEEr['i.]u
|

leftHalfShatt

Iy

W
—|t2:T°‘;"'”E spline ”3T;':q“‘3 {J_Eldif:niﬁerential

- tram
tram E
rightHalf Shatt
ol - -

rfw : FromtWheel [1]

|3I . Fr

-

-,
l_____|

I: Fral

pritvyhieel

eel

Figure 61 -- Sample of structure displayed in IBD

4. You can also display the structure of the FrontWheelsAssembly block in the structure

compartment of the block itself.

5.2.2.13 Converting nested parts to dot notation

To convert a Part or a set of Nested Parts to the “Dot Notation” form, simply drag such Parts and drop them on
another valid view. For example, drag the part d:D to empty space in the containing diagram as shown below.

A

Figure 62 -- Drag and drop the part to be converted to dot notation

The confirmation dialog will be then open. Click the “Show in Path Notation” button to convert the Part to the “Dot

Notation” form.

Then, the part will be moved to the diagram canvas, and displayed in the “Dot Notation” form.

M

[|
b.ed:D
u

Figure 63 -- Dot notation part created

Diagram Specific Procedures

You can also move the created part from the diagram back to the structure compartment of the part b:B. The part
will then be moved to the structure compartment and shown in the “Dot Notation” form.

cd:D

Figure 64 -- Dot notation part in Structure compartment

You can also convert a Part displayed in the “Dot Notation” form to a set of Nested Parts (where applicable).
Simply right-clicks the part, and then select Refactor > Convert to Nested Parts.

The part will be converted to a set of Nested Parts.

Figure 65 -- Nested parts after conversion

5.2.2.14 Extracting structure

Extract Structure is the first advanced automated refactoring method in our “Refactoring” tools group.

Extract Structure allows you to easily select a portion of an existing system structure and transform it into another
reusable Block (or Subsystem) which may then be used as parts in many other structures. In addition to this, the
Extract Structure feature can also play a 'move' or a 'decompose' role when a structure becomes too complex and
requires to be decomposed into several smaller reusable parts.

Recursive decomposition of structure and behavior is an important aspect of the iterative development process.

This feature is particularly useful for the automotive, aerospace, and defense communities for modeling complex
systems-of-systems and building reusable components.

To extract a new structure from an existing structure in a classifier

1. In an Internal Block Diagram or a structure compartment, right-click a portion of the internal
structure (part(s)) which you want to move or reuse (see the red selection rectangle).

These selected symbols must be owned by the same Classifier.

Diagram Specific Procedures

|_TRSMCm [rfw:FrontWheel[1] | N
; I N
L# | . d
cirl trsm : Transmission it] ——— :EI_ -
t2: Throjue
(t]
|_TRSMData torgueln : Torgue
rightHalfShatt
g1 Targue d
torquedut ; Targue |l| spling
ice : InternalCombustionEngine
|_ICECmds fi : Fuelinjector [4] tram .
L |
t1 :|Targque—L dif : Differential
4 -
crl
] fdist a1
¥
| ICEData Part : ICEFUeFitting leftHalt=hatt
- o
shlocks
fuelDelivery f.ueISuppI'f: Fuel ! fw : FrontWheel [1] I__[:l
L

Figure 66 -- Internal Block diagram before extracting structure

2. Select Refactor > Extract. The Extract Structure Wizard dialog will open, listing three steps to
extract a structure: Specify a new element, Create port(s), and Create a property.
3. Follow the steps of the wizard.

The following figure shows the IBD after the structure was extracted. Since it preserves the diagram space of the
previous structure, the original diagram will have minimal distortion and the existing layout will remain.

Diagram Specific Procedures

&

L |

tram : Transmission it

(1]

torgueln : Torgque

torgquetut : To

gl : Torgue
FoLE

ice : InternalCombustionEngine

1]

fi : Fuelinjector [4]

i

Part © ICEFuelFitting

el=upply - Fuel

L A
t1: Torgue

ghlocks

tram 'f]
zpline bt romWheelAssembly : FromtWheelAssemb

Figure 67 -- Internal block diagram after extracting structure

rightvwheel : FrantWheel

leftiyhesl . Frontwheel

9

You can check how the automatically-created new Block looks like by right-clicking the part and select Go To >

Type <name> to select the Block in the browser.

Open the created IBD to display the structure which was recently extracted. The structure view will be ready.

Conkainment

O
(m o 3

agny

= (6] v (@)

EI,E HSUY Skructure
E}-5F Relations
--B H3lW Inkerfaces
B3 wheel

El-E Frontwheelassembly

B - Relations

-IFwa : Frontwheel [1]
-rfw ¢ Frontwheel [1]
-dif : Differential
+leftwheel : Frontwheel

B

B

- 1 +rightwheel
=

- #ccelerator

-8 Automativelamnain
- BatteryPack,

- BodySubsystem

H

- —hassisshswstem

FrontWwheeldssembl,

: Frontwheel

* B X

RF LB T
1 Commaon

=2 Moake -
|§;‘ Problerm

E Rationale

abc Texk Box -
B anchar -
A Containment -
1 Bhstraction -

-1 Dependency
N llocate
B Imane Shane

Mew Relation

QOpen

Specification

- BrakePedal
- BrakeSubsystem &o Ta
-~ CAN_B
= = Refactor

Figure 68 -- The created IBD of extracted classifier

Enter

Diagram Specific Procedures

ibd [Block] FromtWheel&ssembly [FrontWheeldssembly J_J

| rfw : FrontWhee [1] lrigf‘rt'l.-“-JheeI:Fr::nnﬂ%eell_

I i []
e _EE}_ 1

righitHalfShatt

tram i
i L |
;|tr_smEF' M s dif : Differential
t1 : Torgue,
12 Torgue 'T'

=1
L4

leftHalfShatt

- - — - —
| zhlocks | leftiyhesl . FrontWwheel |‘:|
L

Ifw : FrontWheel [1] | L

Figure 69 -- Displayed extracted structure

5.2.2.15 Creating a flow port

In general, a port / flow port should be defined in a BDD. However, you can also create a flow port on a part in an
IBD by using the IBD toolbar button.

To create a flow port on a part

1. Click the Flow Port button either:
e on the IBD toolbar, or

e in the smart manipulator of the part.

2. If you click the Flow Port button on the IBD toolbar, select a part where the flow port will be
created. If you clicked the smart manipulator of the part, go directly to step 3.

Diagram Specific Procedures

ibd [Block] Block1 [i Block1]J

==hlack==
partla.part2a.partda : Block5

==hlock==
partib : Block3

==hlock== [| _j@:
part3a.partda : Block5

Figure 70 -- Flow port created on part

3. Select a port type in the Select Port Type dialog. The flow port will then be created, having an
‘inout’ direction.

4. You can change its direction using the port shortcut menu. Note that, without a direction, the flow
port will be just like a normal port (it will not enforce any direction on the item(s) flowing in/out of
the port).

The Flow Port direction must be defined.
27 NOTE

ItemProperty I

Iltem Property is the only attribute of Iltem Flow. An Item Flow describes the flow of items across a connector or an
association. If an Item Flow is assigned to a connector, in general, you can specify this optional attribute, Item
Property, to relate the flowing item to the instances of the connectors’ enclosing block.

In general, Item Flows (and Item Property) are defined on connectors in IBDs.

To create an Item Flow having the Iltem Property tag initialized on a connector

1. Do one of the following:

e click the Item Property button on the IBD diagram toolbar, and then select the
connector, or

e click the Item Property icon on the connector smart manipulator menu, or
e drag the property, which will be used as the item property, to the connector.
2. The Item Flow / Item Property dialog will then open.

Diagram Specific Procedures

E ltem Flow I ltem Property b__<|

Select or create elements those will represent conveyed
information circulating From source ko target in given direction,

Item Flow: [=MEW = -]
Direction: | vl
Conveyed Classifiers: | | Z]
Item Property: | | :]

Figure 71 -- Item Flow / Item Property dialog

3. The existing item flows on the selected connector can be selected for setting the item property
using the Item Flow drop-down menu. The item flows, whose realizing connector property
contains the selected connector, will be listed in this drop-down menu.

E Iltem Flow f ltem Property E|

Select or create elements those will represent conveyed
inFarmation circulating from source ko karget in given direction,

Item Flow: <MEW = -

Direction:

<MEW =

ItemFlow:g[B::pb - Ciipe]

Conveyed Classifiers:

Ikem Property:

(Mumber of elements - 2} -

Figure 72 -- Item Flow / Item Property dialog - Item Flow selection

4. You can also create a new item flow by selecting <NEW> in the drop-down menu.
5. In the Item Flow / Item Property dialog, you can also choose the direction of the ltem Flow from
the Direction drop-down menu.

Diagram Specific Procedures

E ltem Flow I ltem Property [5__<|

Select or create elements those will represent conveyed
information circulating From source ko target in given direction,

Itern Flow: [=MEW = - |

Direction: From pb To pc b

Fram ph To po

Conveyed Classifiers: [S
Item Property: | | :]

Figure 73 -- Item Flow / Item Property dialog - Direction selection

6. Click the browse button “...” next to the Conveyed Classifiers box. The Select Conveyed
Classifier dialog will open.
7. Select a classifier to be used as the Conveyed Classifier and click OK.

E Select Conveyed Classifiers

Search By Mame:
| |

Lisk | Tree |

-7 <UNSPECIFIED >
E-{E Data
--E ML Standard Profile [UML_Standard_Prof

(Murmber of elements - 16])

EEwn® %

[O,] [Cancel] [Mulkiple Selection ===

Figure 74 -- Select Conveyed Classifiers dialog

8. Click the browse button “...” next to the Iltem Property box. The Select Item Property dialog will
open.
9. Select a part (property) to be used as the Item Property and click OK.

Diagram Specific Procedures

[X select ltem Property

g <none
E|E| Daka
BEa
----- [E +partB: B
- [H +parkZ : C

Figure 75 -- Select Item Property dialog

10. Click OK in the Item Flow / Item Property dialog. An Item Flow having the selected property as
its Item Property will be created on the connector.

You can create a new conveyed classifier either on a new item flow or
on an existing item flow by dragging the classifier to a connector or
association. The dragged classifier will be a conveyed classifier of the
item flow.

5.2.3 SysML Package Diagram Procedures

e Using package element

5.2.3.1 Using package element

You can display the name of a package either on top of it or on its tab.

To display a package name

1. Right-click a package and select Header Position on the shortcut menu.
2. Select either:
e Top to display the package name on top

e In Tab to display it in the tab

You can also show a list of elements owned by a package.

To show an element list

1. Right-click a package and select Show Elements List on the shortcut menu.
2. The elements owned by the package will then be displayed in the package.

Diagram Specific Procedures

data|

El Block

El Block1
El Block?
=l Block3
El Blockd

—| Blocks
1] IBD
& BDD

Figure 76 -- List of elements

5.2.4 SysML Parametric Diagram Procedures

SysML Parametric Diagram features include Display Parameters and the other six specific features similar to
IBD. They are as follows:

e Displaying parameters

e Creating automatic constraint parameters

e Creating a binding connector

For more information on the above six features, see the SysML Internal Block Diagram Procedures section.

5.2.4.1 Displaying parameters

This feature enables you to display the constraint parameters of a constraint block on a Constraint Property typed
by the Constraint Block.

To display constraint parameters

1. Do one of the following:
o Select Display Parameters on the property shortcut menu.

e Click the Display Parameters icon on the property smart manipulator.

2. The Select Parameters dialog will open and the constraint parameter(s) owned by the type of the
constraint property will be listed in the dialog.

3. Select constraint parameters to be shown on the constraint property symbol. The selected
constraint parameters will be displayed as small square boxes.

Diagram Specific Procedures

= b -parameter1 [Constraink Block]
- ----- P -parameterz [Constraink Block]
o B -parameter3 [Constraink Block]

Figure 77 -- Select Parameters dialog

==constraint==
: Constraint Block

L]

parameter3 parameter? parameter

Figure 78 -- Constraint property with its constraint parameters

5.2.4.2 Creating automatic constraint parameters

When you drag a binding connector from a property to a constraint property, MagicDraw SysML automatically
shows a list of hidden constraint parameters in the constraint property and suggest new names for a constraint
parameters that you might want to create. If the constraint parameter you want to connect does not exist, you can
create it on the spot. The suggested parameter names come from the names of the properties on the other end of
the binding connector you are trying to connect, and the extracted variable names come from the constraint
expressions defined in a constraint block that types the constraint property.

To create new constraint parameters from the context menu of a constraint block

1. Right-click a constraint block, for example Sum, and select Tools > Create Parameters.

2. Create a constraint parameter, in this example, 'z', which is the variable in an expression that has
not been created as a constraint parameter. A new constraint parameter ‘z’ will be created in the
constraint block Sum.

Diagram Specific Procedures

woonstraints
Sum
coshais
1IZ=%+y)
pamAmeters
¥ Real
v Real
z : Real

Figure 79 -- New parameter

The following examples further illustrate how to create new constraint parameters with this new constraint
parameters creation mechanism.

par [Block] Bleck1 [Defined Constraint Expression lJ

wconstraints
Constraint 1: A
bb : Integer {a=b+c}
L Select Parameter
O a:Integer
bdd [Package] Sample[|[ZBL O b : Integer
#constraints O Newc: Integer
A O New bb : Integer
L Ly]
{a=h+c)
DAIAMEers
a: Integer
b : Integer

Figure 80 -- Binding connector connects to defined constraint expression constraint property

In in the preceding figure, the constraint parameter a:Integer and b:Integer have already been defined in the
constraint block A. However, they are hidden on the constraint property Constraint 1:A. If you select a:Integer from
the list, the constraint parameter a:Integer will appear on the constraint property Constraint 1:A.

Diagram Specific Procedures

par [Bleck] Bleck1| Defined Constraint Expression lJ

wconstraints
Constraint 1: A
bb : Integer a: Integer {a=b+c)

bdd [Package] Sample| @ BOD1 U

wconstraints
A

corEfra s
{a=b+c}

EERETers
a : Integer

b : Integer

Figure 81 -- Connecting binding connector to existing constraint parameter

If you choose to create a new constraint parameter, for example, select New c:Integer from the list, and
MagicDraw SysML will create and add it into the constraint block A. The name of the new parameter is c. It will be
typed by Integer because the opposite end of the binding connector is the value property typed by Integer.

par [Block] Bleck1 [Defined Constraint Expression lJ

wconstraints

Constraint 1: A
bb : Integer c : Integer {a=b+c)

bdd [Fackage] Sample | @ BOD1 U

wconstraints
A

CONEIaNTS
{a=b+c}

OEERETErs
a: Integer

b : Integer
c : Integer

Figure 82 -- Automatically created constraint parameter of defined constraint expression constraint property

In the case that the constraint block typing the constraint property has no parameter and the constraint expression
is undefined, SysML will create a new constraint parameter using the name and the type of the property at the

Diagram Specific Procedures

opposite end of the binding connector. The created constraint parameter will be visible on the selected constraint
property with the binding connector attached.

par [Bleck] Block1 [Undefined Constraint Expression lJ

aa : Integer soonstraints

aa : Integer
4 Constraint 2 : B

i

bdd [Package] Sample [@ EDDZU

wCconstraints
B
COWTRIrRI s
{}
DEEMEers
aa : Integer

Figure 83 -- Binding connector connects to undefined constraint expression constraint property

par [Block] Block1 [Undefined Constraint Expression lJ

[wconstraints
Constraint 2: B

aa : Integer

H

bdd [Package] Sampl&[@ EI-DDE]/J

sconstraints
B

COTEENTE

DaEneiars

Figure 84 -- Automatically created constraint parameter of undefined constraint expression constraint property

5.2.4.3 Creating a binding connector

Binding connectors enable you to bind each constraint block parameter to the property of another block in the
surrounding context of that constraint block. Binding connectors are the only connectors allowed to bind constraint
parameters to the properties of other blocks.

Diagram Specific Procedures

To create a binding connector

1. Click either the Binding Connector button on the Parametric diagram toolbar or the Binding
Connector icon on the smart manipulator of a constraint parameter or a part (property).

2. If you have clicked the Binding Connector button on the toolbar, select a part as the connector’s
origin, but if you clicked the Binding Connector icon from the smart manipulator, go directly to
step 3.

3. Select a part / constraint parameter as the connector’s destination.

5.2.5 Requirements Diagram Procedures

The Requirement Diagram procedures are as follows:

e Changing requirement type

e Creating Requirements Diagram for sub-requirements

e Numbering requirement IDs

e Using requirement element

For more information about creating, importing, and analyzing requirements, see
CameoRequirementsModelingPlugin UserGuide.pdf.

5.2.5.1 Changing requirement type

Use this feature to change one or several requirement types to another requirement type.

To change one or more requirement types to another requirement type

1. Right-click a requirement(s) whose type(s) you would like to change and select Refactor >
Convert To.

2. Select More Specific, More General, or Other. The requirement type options will be displayed.

3. Select a new requirement type from the options. The type(s) of the selected requirement(s) will
then be changed.

5.2.5.2 Creating Requirements Diagram for sub-requirements

MagicDraw SysML provides an easy way to create a requirements diagram for sub-requirements of the selected
requirement symbol.

To create requirements diagram for sub-requirements

1. Click the requirement symbol in which you want to create the requirements diagram for its sub-
requirements.

2. Click the Create diagram for sub-requirements button from the smart manipulator.

Diagram Specific Procedures

3. The new requirements diagram for the sub-requirements will then be created with the same name
as that of the selected requirement.

req [requirement] Perfarmance [Performance]J

sreguiremert:
Performance

el

gheguirement:
FuelEconomy

sheguiremernt:
Braking

sheguiremert:
Acceleration

ghegquirement:
OffRoadCapability

Ig="22"

Text="The Hyhrid
HELIY shall have
dramatically better fuel

d="21"

Text="The Hyhrid LI
shall have the hraking
capahility of a typical
SLs"

Id="24"

Text="The Hybrid SV
shall hawe the
acceleration of & typical
S "

g ="23"

Text="The Hybrid 3LV
shall have the off-road
capahility of 2 typical
St

econamy than a tvpical
Sl

Figure 85 -- Requirements Diagram for sub-requirements

5.2.5.3 Numbering requirement IDs

Numbering requirements is a trivial, time-consuming task, in particular, when working with a large SysML project.
SysML Plugin uses the DSL numbering engine, which is generic, highly flexible, and customizable. The
requirements numbering mechanism in SysML is the same as that in MagicDraw. Consequently the Requirement
ID Numbering menu has been changed to Element Numbering and the Requirement ID Numbering dialog has
been replaced with the Element Numbering dialog.

To edit the requirements numbering settings

1. On the main menu, click Options > Project. The Project Options dialog will open.
2. Select General project options from the list on the left-hand side. You will see the Numbering
options opens on the right-hand side.

3. You can select the Use Element Auto-numbering check box if you want SysML to number
requirements automatically and then select the Display Element Number check box if you want
requirement numbers appear before the requirements in the Containment tree.

4. Click OK.

Manual Numbering

To number a requirement or edit a requirement’s number using the Element Numbering dialog

1. Right-click a requirement in the Containment tree and select Element Numbering. The Element
Numbering dialog will open.

2. Select, for example, the HSUV Requirements package in the browser on the left-hand side of the
dialog. The requirements owned by the package will appear in the Requirements pane on the
right-hand side of the dialog.

3. In the Requirements pane, select the requirement(s). Use the Edit, Create/Remove, Increase,
Decrease, Renumber or Renumber Recursively buttons to number the selected requirements.

4. For example, if you click the Renumber button, the requirements under the package selected in
the browser on the left-hand side of the dialog will be renumbered using the predefined Separator,
Prefix, Numbering Scheme.

Diagram Specific Procedures

5. You can click the Recursive Renumber button to renumber all requirements that are recursively
contained inside the selected node. The Numbering Scheme, Prefix, and Separator, which are
defined in the selected node, will be used for recursive renumbering. If the Package-specific
Numbering Configuration of the lower-level nodes exists, then a message box will open to ask
whether to replace the existing values with the values of the selected node.

6. Since there is no Numbering Scheme, Prefix and Separator values defined in the ‘HSUV
Specification’, ‘HSUV Requirements’ and ‘HSUVModel’ packages, the values defined in the ‘Data’
package (default) will be used instead (Numbering Style = Multi-Levels, Prefix = , and Separator
=)

For more information about numbering elements, see the
MagicDraw User Guide.pdf.

The Edit, Create/Remove, Increase, Decrease, Renumber or Renumber
Recursively buttons are used to add / edit / remove requirements’ numbers
' directly owned by the package or the selected requirement (selected in the
browser on the left-hand side of the Element Numbering dialog) only.

e SysML Plugin provides two numbering styles to number requirement IDs:
Consecutive (previously called normal style) and Multi-Levels (previously
called nested style).
e Using the Consecutive numbering style, each requirement ID is numbered

with a prefix, followed by numbers, without any separator.

e Using the Multi-Levels numbering style, each requirement ID is numbered
with a prefix, followed by numbers. A separator is used to separate each
level of number. The level will be increased by the containing level of the
requirement.

e You can use a character or a symbol, excluding number, as a Separator.

e Numbering Scheme, Prefix and Separator can be defined at a package or a
top-level requirement. A requirement is considered to be top-level only if it is
directly owned by a package, model, or profile. A requirement owned by
another requirement is NOT considered as a top-level requirement. A top-
level requirement ID cannot contain any separator.

e The Numbering Scheme, Prefix, and Separator values defined in an upper-
level node (package, model, profile) will be overridden by the values defined
in a lower-level node (package, model, profile, top-level requirement).

e The ‘Data’ package contains the default Numbering Scheme, Prefix and

Separator values defined for your project (Numbering Scheme = Multi-Level,
Prefix = ”, and Separator = *.").

Automatic Numbering

Once this functionality is turned on, the IDs of the newly-created requirements will be numbered automatically.

To number requirement IDs automatically

1. Click Options > Project on the main menu. The Project Options dialog will open.

2. Under the SysML group, select the Use Element Auto-numbering check box.

3. The IDs of any newly-created requirements will now be numbered automatically with the
Numbering Style, Prefix, and Separator which are defined in the requirement owner.

Automatic Numbering will NOT modify any existing ID. Thus,

requirements with IDs will NOT participate in Automatic

Numbering.

Diagram Specific Procedures

Suggested Solutions for Invalid Requirement's ID

When the ID of a requirement element is invalid with respect to the validation constraint ‘Requirement[A]’ (a
requirement's ID must be unique), the requirement will be highlighted. If you select such a requirement, the
requirement smart manipulator menu will also propose the following two solutions.

Assigning A New Number

You can also use this solution to automatically re-assign a new requirement's ID to the selected requirement. The
first available correct ID will be assigned to the requirement automatically.

=

-

Cpen Requirement ID Mumbering dialog

Assign new number

NN F

)
E

- - Ignore
grequirement:s grequirement:

Rx Ry
ld="1" Eﬂd:"1"
Text="" Text=""

& |

al

LY
N,
[=]

Select in Walidation Resulks

‘mE e Sy

[

Figure 86 -- Assign new number solution

Finding A Requirement

To find a requirement in the Containment tree and in the Requirement ID Numbering dialog tree

1. Select a requirement in the Containment tree or the Requirement ID Numbering dialog tree.

2. To search for a requirement by its ID, type the ID of the requirement. A matching requirement will
be selected, if any.

'ﬂg Containment

]
=

Zankainmmenkt
el . T =) -
Searchfor:2.1 | ¥ B
E--E=] Data L
E}- 2 Relations
Bl HsUyModel
- Relations
-7 Explanations
- HSUW Analysis
E-£ HSUW Behavior
EIB H3LY Requirements
B} Relations
E-F HSUWY Specification
LA " PowerSourceManagement
E}-[H 2 Performance
I o e FuelEcononmy
[\ #.3 OffRoadCapahility
A 2.4 Acceleration
7.1 Braking w

Figure 87 -- Finding requirement by ID in Containment tree

Diagram Specific Procedures

3. To search for a requirement by its name, type “*” followed by the name of the requirement. A
matching requirement will be selected, if any.

% Containment

Containmment
(= T = e =
Search for: *OFfRoadCapability
Bl Data ”
E}- 7 Relations
EHF] H5UYModel
- Relations
--E‘j Explanations
E-E3 HSUY Analysis
E-E3 HSUY Behavior
-] HSW Requirements

B} Relations

B HSUY Specification

A " " PowerSourceManagernent

E}I__EI 2 Performance

: ----- A 2.2 FuelEconomy

7,3 OFfRoadCapabilicy

|
=

m..

----- [z.4 fcceleration
iw[H 2.1 Eraking b

Figure 88 -- Finding requirement by name in Containment tree
This type of search for requirement will not work if the element is
I%“ NOTE not shown in browser when searching.

To find the requirement using the Find dialog

1. You can either select Edit > Find in the main menu, or press Ctrl + F to open the Find dialog.

2. To search for a requirement by ID, select the tab for searching element by tag value in the Find

dialog. In Name combo box, type “Id” and then type the ID of the requirement into the Value
combo box. Click Find button.

Diagram Specific Procedures

& Search Resulks

Search Resulks o ox

7 R

E-5earch Results Search element by bag value
--D Fram loaded diagrams (23 Marme |I|:| W |
Bt From maodel (13 valle v| o)

n[R 4,1 CargoCapacity

Type | |
Scope | | Z]

Search in ackive diagram only

[] Load diagrams and autoloadable modules
[] Case sensitive

[] Match whole words anly

[] Search data unused in diagrams

[] orphaned proxies only

[] 3ava regular expressian

Clear previous results

[Find l [Close] [Help

Figure 89 -- Finding requirement by ID using Find dialog

e To search for a requirement by its name, select the tab for searching element by name. Type the
name of requirement into the Name combo box. Then click the ... button next to the Type text field
and select Requirement. Finally, click the Find button.

Diagram Specific Procedures

& Search Resulks

Search Results X B | o " e [13 " B |
7 R
E-5earch Results — Search element By narme

-7 From loaded diagrams (0]

E}D From model (1)
LR 2.4 fcceleration

Search in ackive diagram only

[]Load diagrams and autoloadable modules
[] Case sensitive

[] Match whole words anly

[] 5earch data unused in diagrams

[] ©rphaned praxies only

[]3avaregular expressian

Clear previous results

Find l [Close] [Help

Figure 90 -- Finding requirement by name using Find dialog

To find the requirement using the Quick Find dialog

1. You can either select Edit > Quick Find... in the main menu or press Ctrl + Alt + F to open the
Quick Find dialog.

2. To search for a requirement by ID, type the ID of the requirement into the combo box Type Name
in the Quick Find dialog.

Tvpe Name:
2] a
1 match Found
_I mi Z.2 FuelEconomy [HSMModel: \HSUY Requirements: :Performance]

£ >

= |[Exlw e

Figure 91 -- Finding requirement by ID using Quick Find dialog

Diagram Specific Procedures

3. To search for a requirement by its name, type “*” before the name of the requirement in the combo
box Type Name.

Tvpe Mame:

* FuelCaparcity E]
1 makch Found

mi 4,2 FuelCapacity [H3UYModel; :H3UY Reguirements: :H3UY Specific

< >
Emiw

Figure 92 -- Finding requirement by name using Quick Find dialog
5.2.5.4 Using requirement element

Creating Your Own Requirement Type (Subtype)

You can define an additional requirement type by creating a new stereotype that generalizes the requirement
stereotype).

Requirement Subtypes

The following table provides the definitions of the non-normative enumerations that are used to type the properties
of the requirement subtypes.

Enumeration | Enumeration Function
Literals
RiskKind High To indicate an unacceptable level of risk.
Medium To indicate an acceptable level of risk.
Low To indicate a minimal level of risk or no risk.
VerificationMet |Analysis To indicate that verification will be performed by
hodKind technical evaluation using mathematical

representations, charts, graphs, circuit diagrams, data
reduction, or other representative data. Analysis also
includes the requirement verification under conditions,
which are simulated or modeled; where results are
derived from the analysis of the results produced by the
model.

Demonstration To indicate that verification will be performed by the
operation, movement, or adjustment of the item under
specific conditions to perform the design functions
without the record of quantitative data. Demonstration
is typically considered the least restrictive verification

type.

Diagram Specific Procedures

Enumeration | Enumeration Function
Literals
Inspection To indicate that verification will be performed by

examining the item, reviewing descriptive
documentation, and comparing the appropriate
characteristics with a predetermined standard to
determine conformance to the requirements without the
use of special laboratory equipment or procedures.

Test To indicate that verification will be performed through
systematic exercising of the applicable item under
appropriate conditions with instrumentation to measure
the required parameters and the collection, analysis,
and evaluation of quantitative data to show that the
measured parameters are equal to or exceed the
specified requirements.

=%
Test Cases ® =

Al The type of return parameter (Direction = return) of a Test Case element must be VerdictKind (an
enumeration).

bdd [Model] Data[@Enumeraﬂantypes]J

==enumeration==
VerdictKind

pass
fail
inconclusive
error

Figure 93 -- VerdictKind enumeration

Requirement Relationships

-

~o Derive Relationship (Dependency)

As with other dependencies, the arrow direction points from the derived (client) requirement to the
(supplier) requirement from which it is derived.

" The supplier and the client of a Derive dependency must be requirement elements or
requirement subtype elements.

)
<= Satisfy Relationship (Dependency)
+ The supplier must be a requirement element or one requirement subtype.

=n Copy Relationship (Dependency)
£ F

A Copy dependency created between two requirements maintains a master/slave relationship
between the two elements for the purpose of requirements reuse in different contexts. When a

Diagram Specific Procedures

Copy dependency exists between two requirements, the requirement text of the client requirement
is a copy of the requirement text of the requirement at the supplier end of the dependency.

L\‘; The supplier and the client of a Copy dependency must be requirement elements or
requirement subtype elements.

5.2.6 SysML Activity Diagram Procedures

SysML Activity Diagram specific features include:

e Select Operation

e Dynamic Centerlines

e Decomposing activities

5.2.6.1 Select Operation

Click Select Operation on the Call Operation Action shortcut menu to select an operation for that Call Operation
Action.

E Select Operation
Model |

- {# =nones ~
EE Data T
B} Relations
-7 data
E MO Cuskomization For SysML [MD_cuskomization_for S
E IUML Standard Profile [UML_Standard_Profile. xml]
@ SwysML Profile [SysML Profile. mdzip]
bl Assembly
- BLock
- Relations L

----- § Ackor

Create

Figure 94 -- Select Operation dialog

5.2.6.2 Dynamic Centerlines

This feature will display a horizontal or vertical centerline to make it easier for you to align a newly-created shape
(or an existing one that is being shifted around) with one or two existing shapes in a SysML Activity Diagram.

Diagram Specific Procedures

This centerline, however, will only be displayed in situations where the center of the newly-created or shifted
shape coincides with the horizontal or vertical axis of the shape(s) with which it is being aligned, regardless of how
close to or remote from that shape it is.

act [Activity] Activity Diagram|[5] Activity Diagram]J
|

|
Action hame :

.—). Behzwior + ==startOhjectBehaviar==

}
CallOperation
(BLOCK: :@herationd) k= (OpaqueAction
|

@

Figure 95 -- Dynamic vertical centerline

Dynamic Centerlines is enabled by default, So, if you do not want to have an horizontal or vertical centerline
displayed in your diagram, you need to disable it.

To disable Dynamic Centerlines

e Click the Show Centerlines button on the activity diagram toolbar.
e Press C.

e Select Options > Environment on the main menu. The Environment Options dialog will then
open. Clear the Show centerlines in flow diagrams option under the Diagram > Display group
of the Environment Options dialog.

= i? ACT1-B =
[R]#E S]] @ idn - & bb 4 8= B 10 =

] Common | Show Centedines; 3| B9 B 0 .

=4 Mote L

“act [Activity] ACT1-E | 5 ACT1-B]J
abe Texk Box -
E anchar *

- Dependency
] Image Shape
---- Separatar -

"T) SysML Activity Diag. ..

Figure 96 -- Show Centerlines button

Diagram Specific Procedures

5.2.6.3 Decomposing activities

You can decompose activities using the Activity Decomposition Hierarchy Wizard, which makes it possible to
convert activities into Class Diagrams or into SysML BDDs, and represent, analyze, or document activity

hierarchies in a diagram structure.

To decompose activities using the Activity Decomposition Hierarchy Wizard

1. Do one of the following:

e From the SysML Activity diagram shortcut menu, select Activity Decomposition

Hierarchy Wizard.

e On the main menu, select Diagrams > Diagram Wizards > Activity Decomposition

Hierarchy Wizard.

e On the main menu, select Analyze > Model Visualizer. The Model Visualizer dialog

opens. Select the Activity Decomposition Hierarchy Wizard.

2. Follow the three steps in the Activity Decomposition Hierarchy Wizard. The Class Diagram will
then be generated.

class HILW sarrmple[| & | Dec orrposiion of Actiity Accelerate, ProvidePow er, Monitor Traction, Driving, ProvideGasPow ar,

==2acth ity ==
Accelerate

T

- on il Pioniy By
==acthity==
ProvidePower

R

-ap -ag -3 -aft
==grtivity== ==actiy ity == ==gctivity== ==artiv ity ==
ControlElectricPower Provide GasPower ProportionPower ProvideBectricPower Me:
==qrtivity == ==qrtivity == =2ty ity == ==zactivity==
Monitor Traction Turn Key To On Driving Behavior 2

Figure 97 -- Class diagram of the decomposed activities

Swimlane Allocations

Actions and subactivities can be organized into swimlanes in the activity diagrams. The swimlanes are used to

organize responsibility for actions and subactivities according to the class. They often correspond to the

organizational units in a business model.

The swimlanes limit and provide a view on the behaviors invoked in the activities. They consist of one or more
partitions. They can be vertical and horizontal.

Diagram Specific Procedures

An activity diagram can be divided visually into “swimlanes”, each separated from the neighboring swimlanes by
vertical or horizontal solid lines on both sides. Each swimlane represents a responsibility for part of the overall
activity, and may eventually be implemented by one or more objects. The relative ordering of the swimlanes has
no semantic significance, but can indicate some affinity. Each action is assigned to one swimlane. Transitions can
cross lanes. There is no significance to the routing of a transition path.

You can specify swimlane properties in the swimlane Specification window. In the same window, you can find the
description of each property. Descriptions are presented in the description area of the Specification window.

The «AllocatedActivityPartition» stereotype is applied on the partitions automatically when creating swimlanes.

Allocation Mode is now available for the swimlanes:
o Definition mode allocates a behavior to the block. This mode is selected by default.

e Usage mode allocates an action to the part.

a=wimLaneliagrams JJ
act [Activity] ProvidePower [Figure B.35 Detailed Behavior Model for "Provide Power”
sallocates sdllocaten
peu : PowerControlUnit ice : InternalCombustionEngine
Symbol(s) Properties... Alt+Enter
Refactor k
Related Elements »
- Insert Swimlane »
] Insert Inner Swimlane 3
Delete Swimlane k
Allocation Meode k||| | Definition
Usage L\}

Figure 98 -- Allocation modes

Making changes in the model (changing types, moving elements among swimlanes, changing allocation mode,
etc.) can impact allocations. In this version, all such changes are validated automatically. In the swimlanes, the
actions that are not allocated or allocated incorrectly are highlighted and automatic solutions are suggested.

wallocates wallocates
epc : ElectricalPowerController emqg : ElectricMotorGenerator

ehavior is not allocated! I

| _\l
ad:
Contrc-lEIe::‘tri-:Pcrwlilr PrcrvideEIe::‘tric:Pc-wlilr

nE El'm \
el

dl - Current

Figure 99 -- Highlighting not allocated behaviors

ad:

WA]

Diagram Specific Procedures

All allocated behaviors are now listed in the Behaviors property group of the Block Specification window.

B
s¥ Block - PowerControlUni []

Block behaviors

The Behavior node contains a list of owned behaviors (activities, state
machines, interactions, etc.) and buttons for creating or deleting them,

E % -De & =

E] PowerControlUnit Behaviors

Usage in Diagrams =|n - ot
hE | 2 ER S

- DocumentationHyperlinks

Constraints Mame Type Owner

Attributes = Allocated

+-[E| Ports . - .
ProportionPower Activi HSUY Behavior Ezl
Operations P = v B

"

Relations
Signal Receptions

Clone Delete

Figure 100 -- Allocations in behavior Specification window

Accept Change Structural Feature Event Action

An Accept Change Structural Feature Event action is a UML Accept Change Event action applying the
«AcceptChangeStructuralFeatureEvent» stereotype. It can be used for handling the Change Structural Feature
event which will occur when the value of a specified Structural feature is changed. The Change Structural Feature

event is a Change event applying the «ChangeStructuralFeatureEvent» stereotype. It must be an Event element
of the Accept Change Structural Feature Event action.

To create an Accept Change Structural Feature Event action

1. Select Accept Change Structural Feature Event Action from the SysML Activity Diagram
toolbar. Then click SysML Activity Diagram to specify the location of the newly created symbol of
the action. The Select Property dialog will open for selecting the structural feature.

Diagram Specific Procedures

[M select Pro perty

&

Select, search for, or create an element . -
Search For an element by using list ar tree views, To find an element type =
ket or wildcard (%, 73 into the "Search By Mame" input Field. Search

elements by their qualified names or use camel case when searching iF the /\

l"l_ |"“_

appropriate mode is enabled,

Search By Mame:
“ﬁ.fpe kext or wildcard ¥, ¥ ko search |

Bo Tree | B= List

El-i El-i E‘: E‘v 776 matches Found
- ZLMNSPECIFIED =

BB Data (776 matches)
--D MO Cuskarnization Faor SyshL [MD_customizakion_for_SwsML.mdzip] (115 srabches)
--D QDY Library [MD_coskamizakion_For_SwsML.mdzip] [72 makches)
--D ML Skandard Profile [UML_Standard_Profile. mdzip] (361 matches)
-- Matrix Templates Profile [Matrix_Templates_Prafile.mdzip] (69 makches)
-- SysML [SwsML Profile.mdzip] (151 makches)
B Swstem (1 match)

B mhﬁlg Creation Made

Figure 101 -- Select Property dialog

2. Select a structural feature. The Change Structural Feature event model occurrences of changes to
values of the selected structural feature will be created and set as an Event element of the trigger
of the created Accept Change Structural Feature Event action.

Diagram Specific Procedures

E ChangeStructuralFeatureEvent - == E

Specification of ChangeStructuralFeatureEvent properties

Specify properties of the selected ChangestructuralFeatureEvent in the properties
specification table. Choose the Expert or All options From the Properties drop-down lisk

Lo see moare properties,

O

B abe| A = = History :||ﬂChangeEvent when (3 [System:: System] Vl

CaflchangeEvent when () =

?DcumETntati-:;n,l'HypE B 'El I;l El-i El-i F'ru:uperties:|Expert v|['§(Custnmize]
Rnerllztri.:.nimen) Applied Stereotype % ChangeStructuralFeatureEvent [«
Tags Change Expression
- Constraints Image
Mame
Cimner T Syskem [Swstem)
CQualified Mame Syskem 1Sy skem:

Structural Feature 0@ 4m : kg [System]

To Do

Structural Feature

Figure 102 -- Specification window of created change structural feature event

3. Click OK in the Select Property dialog. The Accept Structural Feature Event action will be created
in the selected SysML Activity diagram.

=

(‘act [Activity] System[System)

et

d when ()
I

"o afcceptChangeStructuralFeatureEvent Sotion:

-
o

trigger::Bvent Element
zthangesStructuralFeatureBvents

-

Figure 103 -- Created accept change structural feature event action

5.2.7 SysML Use Case Diagram Procedures

The SysML Use Case diagram specific features include:

Numbering Use Cases

Diagram Specific Procedures

5.2.7.1 Numbering Use Cases

To number the use cases in a Use Case diagram

1. Select Use Case Numbering on the diagram shortcut menu. A Question dialog will open,
indicating that this feature requires UseCase Description Profile, and ask if you would like to use

it.

You can also select Use Case Numbering on:

e Use Case shortcut menu
e Package shortcut menu

2. Click Yes. The Change Use Cases Numbering dialog will open.

X Change Use Cases Numbering

El-E H3UY sample

Eb-F] HSUY Model
It| Analysis
It| Behavior
It| Configuration
It| Requirements
It| Skructure
It| Test

EID UseCases
Mg brid SUV
It| Wigms

Use Cases | se Cases Owners

Mumber Mame

= Operate theYehicle
< Insure thevehicle

<2» Reqister thevehicle
<2» Mainktain the Yehicle

i1 matrix templakes [matriz_templates_module, i
-] MO Cuskomization For SystL [MD_customizabion

i] MadelingComain

i == sample profile
i == SysML Profile [3ysML Profile, mdzip]

i ML Standard Profile [UML_Standard_Prafile.,

i---F1---F1---[F1---[F1---[F1---[F1

.. F | lear sra Macevinkion Drefila T lcaraca Drafila o edit || create |
< | >

Renumber

Figure 104 --

3.

Change Use Cases Numbering dialog

Click Create to automatically number the selected use case. Each use case number will be
increased by increments of one. For example, if the Operate theVehicle use case is numbered
'1", select the Insure theVehicle use case, and then click the Create button to number the use

case to 2.

. Click Remove, Increase, or Decrease to subsequently remove, increase-by-one, or decrease-by-

one a use case number previously ascribed.

. Click Edit to arbitrarily create a new number or change an existing number to another number.

Once selected, the Type Number dialog will open.

5.2.8 SysML Sequence Diagram Procedures

The Sequence diagram focuses on the Message interchange between a number of Lifelines.

A sequence diagram shows the interaction information with an emphasis on the time sequence. The diagram has
two dimensions: the vertical axis that represents time and the horizontal axis that represents the participating
objects. The time axis could be an actual reference point (by placing the time labels as text boxes). The horizontal
ordering of the objects is not significant to the operation, and you can rearrange them as necessary.

Diagram Specific Procedures

The “dot notation” is available for the lifelines. Now you can send messages directly to the deeply nested parts.

To display a deeply nested part

1. Create a Sequence diagram. The Display Lifelines dialog opens.

You can open the Display Lifelines dialog in the existing diagram. On
the diagram pane, click the right mouse button and from the shortcut
menu, select Related Elements > Display Lifelines.

2. Select a nested part you want to display.

Make sure that the nesting part is not selected, otherwise it will be
displayed instead of the nested part.

WY Display Lifelines

Display or create lifelines
Select lifelines for displaying them in the
diagram.
Also, select parameters andfor properties for
creating and displaying lifelines for them.

H
H

El- W [] Part Property

- [C] OB : CAN_Bus

5] 8 +uelSupply @ Fuel
|:| [H +gl: Torgue

- [7] CB +1: ElectricCurrent Dot notation”
- [7] OB -dif : Differential
EH [] [E -ce : InternalCombustionEngine = ice | fuelSupply : Fuel | ice.fi : Fuellnjector

i [F| OB -fi : Fuellnjector [4 T . T
_ y [4] | 1 start ¥

- [0@ -fil : Fuellnjector

-] @ -fi2 : Fuellnjector

- [7] A -Ai3 : Fuellnjector

) I |
I |

1 | 1] [

=d [Interaction] PowerSubsystem[PowerSubsystem D

| Clear Al || selectal |

[Ok J [Cancel] [Help

SysML Specifications define the model of the quantities, units, and dimensions (quantity kind) in Annex C: Non-

normative Extensions. You can define your own quantity and unit using the QuantityKind and Unit blocks defined
in QUDV Model Library.

6.1.1 QUDV Model Library

QUDV Model Library is available for use in every new SysML project. The library, located in <md.install.dir>/
modelLibraries directory, consists of four sub-libraries:

e QUDV
e S| Definitions

e Sl Specializations

e S| Value Type Library

6.1.1.1 QUDV

QUDV Model Library (QUDV.mdzip) consists of main definitions of new units and quantity kinds system as
specified in OMG SysML Specifications, for example, SimpleUnit, SimpleQuantityKind, DerivedUnit,
DerivedQuantityKind, AffineConversionUnit, UnitFactor, QuantityKindFactor, and many more. Full details of QUVD
Library Model definitions are available in Annex C: Non-normative Extensions to OMG SysML specifications.

6.1.1.2 Sl Definitions

The Sl Definitions library (SIDefinitions.mdzip) consists of predefined units and quantity kinds in QUDV system
that you can use in your model. You can customize the units and value types.

6.1.1.3 Sl Specializations

The Sl Specializations library (SISpecializations.mdzip) consists of a diagram (and Blocks). It demonstrates how to
extend the current QUDV system.

6.1.1.4 Sl Value Type Library

MagicDraw SysML provides a model library that contains predefined value types. You can use them for typing the

value properties in your SysML model. These value types use the units and quantity kinds defined in the QUDV
model library.

Name | Unit Quantity Kind
A ampere : SimpleUnit electricCurrent : SimpleQuantityKind
A/m amperePerMeter : DerivedUnit magneticFieldStrength : DerivedQuantityKind

A/m? amperePerSquareMeter : currentDensity : DerivedQuantityKind
DerivedUnit

Model Library for Quantities, Units, Dimensions, and Values (QUDV)

Name
Bq

cd

cd/m?

Gy

Hz

kat

kg
kg/m?

m?/kg

m'1

Pa

rad

sr
Sv

Wb

Unit
becquerel : DerivedUnit
coulomb : DerivedUnit

candela : SimpleUnit

candelaPerSquareMeter :

DerivedUnit

farad : DerivedUnit
gray : DerivedUnit
henry : DerivedUnit
hertz : DerivedUnit
joule : DerivedUnit
kelvin : SimpleUnit
katal : DerivedUnit
kilogram : SimpleUnit

kilogramPerCubicMeter :
DerivedUnit

lumen : DerivedUnit
lux : DerivedUnit

meter : SimpleUnit

meterPerSecond : DerivedUnit

meterPerSecondSquared :

DerivedUnit
mole : SimpleUnit

molePerCubicMeter : DerivedUnit

squareMeter : DerivedUnit

cubicMeter : DerivedUnit

cubicMeterPerKilogram :
DerivedUnit

reciprocalMeter : DerivedUnit

newton : DerivedUnit
pascal : DerivedUnit
radian : DerivedUnit
second : SimpleUnit
siemens : DerivedUnit
steradian : DerivedUnit
sievert : DerivedUnit
tesla : DerivedUnit

volt : DerivedUnit

watt : DerivedUnit

weber : DerivedUnit

Quantity Kind

radionuclideActivity : DerivedQuantityKind
electricCharge : DerivedQuantityKind
luminouslintensity : SimpleQuantityKind

luminance : DerivedQuantityKind

capacitance : DerivedQuantityKind
absorbedDose : DerivedQuantityKind
inductance : DerivedQuantityKind
frequency : DerivedQuantityKind
energy : DerivedQuantityKind

thermodynamicTemperature : SimpleQuantityKind

catalyticActivity : DerivedQuantityKind
mass : SimpleQuantityKind

massDensity : DerivedQuantityKind

luminousFlux : DerivedQuantityKind
illuminance : DerivedQuantityKind
length : SimpleQuantityKind
velocity : DerivedQuantityKind

acceleration : DerivedQuantityKind

amountOfSubstance : SimpleQuantityKind

amountOfSubstanceConcentration :
DerivedQuantityKind

area : DerivedQuantityKind
volume : DerivedQuantityKind

specificVolume : DerivedQuantityKind

waveNumber : DerivedQuantityKind

force : DerivedQuantityKind

pressure : DerivedQuantityKind
planeAngle : DerivedQuantityKind

time : SimpleUnit

electricConductance : DerivedQuantityKind
solidAngle : DerivedQuantityKind
doseEquivalent : DerivedQuantityKind

magneticFluxDensity : DerivedQuantityKind

electricPotentialDifference : DerivedQuantityKind

power : DerivedQuantityKind

magneticFlux : DerivedQuantityKind

Model Library for Quantities, Units, Dimensions, and Values (QUDV)

Name
°C

Unit

celciusTemperature :
AffineConversionUnit

ohm : DerivedUnit

Quantity Kind

celciusTemperature : DerivedQuantityKind

electricResistance : DerivedQuantityKind

MagicDraw provides the Validation functionality to validate user-created models against a set of constraints. Use
SysML validation suite (SysML ValSuite) in SysML Plugin with this MagicDraw functionality to validate SysML
models.

See MagicDraw User Manual for more information on this MagicDraw functionality.

SysML ValSuite includes seven validation suites:

1. SysML ValSuite - Activities

2. This suite contains SysML constraints on the following elements: Control Operator, Control Value,
Discrete, noBuffer, Optional, Probability and Rate.

3. SysML ValSuite - Blocks

4. This suite contains SysML constraints on the following elements: Binding Connector, Block,
Distributed Property, Part Property, Reference Property, Shared Property, Value Property and
Value Type.

5. SysML ValSuite - Constraint Blocks

6. This suite contains SysML constraints on the following elements: Constraint Block and Constraint
Property.

7. SysML ValSuite - Model Elements

8. This suite contains SysML constraints on the following elements: View and Viewpoint.

9. SysML ValSuite - Non-normative Extensions

10. This suite contains SysML constraints on the following elements: nonStreaming, Streaming,
Design Constraint, Functional Requirement, Interface Requirement and Performance
Requirement.

11. SysML ValSuite - Port and Flows

12. This suite contains SysML constraints on the following elements: Flow Port, Flow Property, Flow
Specification and Item Flow.

13. SysML ValSuite - Requirements

14. This suite contains SysML constraints on the following elements: Copy, DeriveReqt, Requirement
and Test Case.

If you use SysML ValSuite as the validation criteria, your model will be
validated against all seven SysML validation suites at the same time.

To validate a SysML project

1. Click Analyze > Validation > Validation on the main menu.
2. The Validation dialog will open.

3. Select a validation suite, for example, SysML ValSuite [MD Customization for SysML::SysML
constraints], in the Validation Suite drop-down list to validate your model against a set of SysML
constraints, in this example, all of them.

Validation

[X validation X
Walidation |
Yalidation Suite: | £ Diagram Merge [UML Standard Profile::MagicCraw Profile: :Merge] w
validate Far: £ Diagram Merge [UML Standard Profile: :MagicCraw Praofile: :Merge] -~

£ Crphaned Proxies [UML Standard Profile: Walidakion Praofile]

Minimal Severity: £ Parameters Synchronization [UML Standard Profile::Yalidakion Profile]
Exclude slemd £ Relations Cwnership [UML Standard Profile;:validakion Profile]

£ shape Owinership [UML Skandard Profile: validation Profile]

£ spelling [UML Standard Profile: Yalidation Prafile]

mm SvshL ValSuite [MD Customization For Sys sML constraints]
£ SysML Malauite - Activities [MD Coustornization For SysMLSyskL | SysML YalSuite
| Yalidate [ancel [=P

Figure 1 -- validation suite package selection

To limit the scope of the constraints to be validated against, select another smaller
validation suite, for example, SysML ValSuite - Blocks to validate against the
constraints in OMG SysML specifications, chapter 8: Blocks. This is useful because,
generally, a user has a limited scope of concerns. Business Analysts, for example,
only concern themselves with Requirements, thus SysML ValSuite - Requirements
should be chosen.

4. In the Validate For drop-down list, select one of the following:
e Whole Project to validate the entire SysML project

o Validation Selection to validate only specific elements in that SysML project.

[X validation |

Yalidation |
Yalidation Suite: | £33 SwsML WalSuite [MD Cuskomization For SysML::SysML conskrainks] W |
Yalidate For: Whole Project [

Minimal Severity:

Exclude elements from read-only madules

[Walidation Options]

Figure 2 -- Validation element selection

5. If you have selected Validation Selection, click the browse button ... to open the Select
Elements dialog. Add elements to the Selected objects pane using buttons in the middle of the
dialog. Only the element(s) listed in the Selected objects pane will then be validated. When all
required elements are selected, click OK.

Validation

E Select Elements

£

&l data:

-- < Relations
B HSLY Modsl
B matrix kemplates [ma

E MO Cuskomization For [

-G ModelingDomain
E 1ML Standard Profile
EG= sample profile
BH-Eg SysML Profile [SysHL
@ IJseiase Description
EH-) editor

B[] SysMLL.O

-] test

lIlF‘n Fire

[>

| &

Selected objects:

fdd Al

x]

Selected |:||:|er|'|:~:

Cancel

Figure 3 -- Select Elements dialog

6. Click the Validate button in the Validation dialog once elements have been selected to be
validated. When the validation process is completed, the results of the validation will be displayed
in the Validation Results window, usually located at the bottom of the MagicDraw window

o Mark Exclude elements from read-only modules to ignore the
elements in read-only modules from the validation process.

e Validation may take several minutes if your model is large.

7. The Validation Results window will show the elements that do not conform to some constraints in
the selected validation suite. These elements are called “invalid” elements and are highlighted. If a
highlighted invalid element is selected, for example, the Loss of Fluid requirement element, a

warning will appear.

zrequirement: zrequirement: ‘{h
OffRoadCapability FuelEconomy A
Id="22" d="22" e
Text="The Hylrid Text="The Hybrid A
SV shall hawve the E SV shall have -
oft-road capability of rarmatically AT
atypical SL" hetter fuel A
economy than a Iy

typical L " =

Lk

Figure 4 -- Invalid elements highlighted after Validation

8. Place your mouse pointer on the warning icon to display the error message corresponding to the

broken constraint.

Validation

grequirement: srequirement: %
OffRoadCapability FuelEconomy ;{ Requirement I must be unique.
ld="2.2" lg="22" P
Text="The Hyhrid Tewt="The Hyhrid =
sV shall have the E SV shall have i
off-road capahility of ramatically oS
atypical 5L " hetter fuel P
ecanamy than a prd
tipn:al S =
& |

Figure 5 -- Error message displayed on warning symbol

9. Click the warning icon to display a menu. Then, select either Ignore or Select in the Validation

Results.

e If you select Ignore, the invalid element will then be excluded from the next validation
process.

e If you select Select in the Validation Results, the element will then be selected in the
Validation Results window. This option helps identify the invalid element instantly,
especially when there are a number of invalid elements displayed in the Validation
Results window.

gregquirement: m lelotte
FuelEconomy A Select in Yalidation Results
ld="2.2" .
Text="The Hyhrid A
E: SV shall have -
ramatically ST
hetter fuel A
econamy than a P
trpical S " =
[m

Figure 6 -- Invalid element validation options

10. The Validation Results window includes the following icons. If you click the:

° E icon (Select in Containment Tree), you will be redirected to the selected invalid
erement in the Containment Tree.

° icon (Select Rule in the Containment Tree), you will be redirected to the broken
constraint of the selected invalid element in the Containment Tree.

° icon (Open all diagrams containing the selected element), any diagram
containing the selected invalid element will then be displayed.

° & icon (Solve), you can either ignore the selected element (which will thus not be
considered in the next validation process), or select one of the solutions provided to

Tesolve the invalidity.

s

e I ™ jcon (Run validation with current settings), the validation process will be executed
immediately, using the previous setting.

° icon (Run validation with a new settings), the Validation Suite Packages

Selection dialog will open. You can then change the settings and re-validate your
model again.

Additional validation rules / constraints can be added and grouped into a
validation suite (either in a newly-created one or in an existing one).

Validation

For more information about the Validation feature, see the Model Analysis in the
Validation section in the MagicDraw User Manual.pdf.

7.1.1 Active Validation

This feature enables you to check at once if a model is correct and complete. Unlike the regular Validation feature
in the Validation section above, Active Validation will instantly display any errors in the model and suggest
appropriate solutions.

To validate a SysML model, SysML ActiveValSuite package contains six active validation suites:
o SysML_activeValSuite - Activities
e This suite contains SysML constraints on the following elements: Discrete and noBuffer.
e SysML_activeValSuite - Blocks

e This suite contains SysML constraints on the following elements: Binding Connector, Block,
Distributed Property and Value Type.

e SysML_activeValSuite - Constraint Blocks

e This suite contains SysML constraints on the following elements: Constraint Block and Constraint
Property.

e SysML_activeValSuite - Non-normative Extensions

e This suite contains SysML constraints on the following elements: nonStreaming, Streaming,
Design Constraint, Functional Requirement, Interface Requirement and Performance
Requirement.

e SysML_activeValSuite - Port and Flows

e This suite contains SysML constraints on the following elements: Flow Port, Flow Property, Flow
Specification and Item Flow.

e SysML_activeValSuite - Requirements

e This suite contains SysML constraints on the following elements: Copy, Requirement and Test
Case.

To turn on the Active Validation feature

1. Click Analyze > Validation > Enable Active Validation, making sure that Enable Active
Validation is selected. The Active Validation engine will validate in real time the model you are
working on whenever the need arises, for example, when a project is loaded or an element of a
model changed.

The following example, a simple SysML project with three requirements and a Copy dependency,

illustrates how this Active Validation feature works.

==reguirement== 7
Requirement 2

SECOpY s

==reguirement== [H
Requirement 1

==COpyEE ":I ==reguirement== [
Requirement 3

Figure 7 -- Invalid elements detected by Active Validation

The model in this project was designed so that Requirement 1 copies Requirement 2 and
Requirement 3 at the same time. However, one of the constraints of a ‘Copy’ dependency is that a

Validation

requirement cannot copy more than one requirement at a time. Thus, this model is invalid since
some elements are invalid against the constraint.

2. Whenever an element is invalid, it will be highlighted in the diagram. On the status bar at the
bottom of the screen, .

e a notification symbol (info “%/, warning Al or error &), and
e numbers and severities of invalid elements
will be displayed. For example,

o !\ 4 W means that there are 4 invalid elements violating constraint(s) of the ‘warning’
severity.

e &) 1E,7W,921in means that there are 1, 7 and 92 invalid elements violating
constraint(s) of the ‘error’, ‘warning’ and ‘info’ severities, respectively.

3. To find out the reason why an element is invalid, you can either:
e Click the warning symbol on the status bar. The Active Validation Results window will
then open (usually at the bottom of the screen), displaying the element(s) that does not

conform to some constraint(s) in the active validation suite(s) and the reason for the
invalidity.

e Select a highlighted invalid element in the diagram. Once a highlighted invalid element
has been selected in the diagram, a warning symbol will appear. Place your pointer on
the warning symbol to see the error message related to the constraint, for instance, A
requirement can't copy more than one requirement.

==requiremert== 7
Requirement 2

SICOpY =S

==requiremert== %

Requirement 1 m

%g?@ﬁf?%: - ¢,4Arequhementcaﬁtcnpyrﬂumthannnerequhement
Requirement 3

Figure 8 -- Invalid «copy» dependency usage

4. Unlike the Validation feature in the Validation section, this Active Validation feature will, in most
cases, also suggest solution(s) to fix model invalidity problem(s). To see the list of appropriate
solution(s) for an invalid element, you can do one of the following:

e Right-click the invalid element in the Active Validation Results window if you have
open this window before.

e Click the warning symbol after you have clicked the invalid element in the diagram.
After clicking, for example, solutions will then be displayed.

Remove all ather redundant Copy dependency(s)

-;__m E:‘?

Remove Copy dependency
Ignore

Select in Walidation Resulks

5. The Active Validation Results window includes the following icons. If you click the:

e Select in Containment Tree, you will be redirected to the selected invalid element in the
Containment Tree.

e Select Rule in the Containment Tree, you will be redirected to the broken constraint of
the selected invalid element in the Containment Tree.

e Open all diagrams containing the selected element, any diagram containing the
selected invalid element will then be displayed.

Validation

e Solve, you can either ignore the selected element (which will thus not be considered in
the next validation process), or select one of the solutions provided to resolve the
invalidity.

e Active Validation Options, the Project Options dialog will then open for you to
customize all the options listed under Active Validation.

6. In the example below, a constraint, referenced as “Copy[A]”, is broken. If the solution suggested
by the Active Validation feature, in this case, Remove all other redundant Copy dependency(s), is
selected, the correctness of the model will be satisfied.

==tequirement== 7
Requirement 2

==COpy ==
==requiremert== mi
Requirement 1 - m| Remaove all other redundant Copy dependencyis) |
;.;,:;:,Fg,\);;.;.: fﬁ r'l|EIA requirement can't copy more than one requirement. |
SR Ignare

Select in Yalidation Resulks

Figure 9 -- Selection of first solution

==requirement== [F
Requirement 2

==requirement== [H
Requirement 1

=Z=COpy== 2 =zarequirements== [
Requirement 3

Figure 10 -- Valid elements

Each implemented constraint has its own appropriate solutions.
The Active Validation feature ensures that SysML modeling is
consistent with OMG SysML Specifications.

Validation

7.1.1.1 Active Validation Options

You can customize the Active Validation feature using the five options in the following figure.

P Project O ptions

&

Il General project options General project options
‘B Diagram Info

3 8 r .
{] symbols properties styles = E

‘B3 Defaulk model properties

1] Cade Engineering =]
Yalidation scope =] Data
Exclude elernents from read-only modules krue
Mark in tree and diagrams true

Ignored validation suites] Parameters Synchronizat
Minimal severity A warning [UML Skandar,

Ignored validation suites

[Reset to Defaults]

Figure 11 -- Project Option dialog

7. Validation scope (default = data): use this option to limit the scope of elements to be actively
validated.

8. Exclude elements from read-only modules (default = true): if this option is selected (selecting
the check box means ‘true’), read-only modules, for example read-only profiles, will not be actively
validated.

9. Mark in tree and diagrams (default = true): if this option is selected (selecting the check box
means ‘true’), invalid elements will be marked with small icons in the Containment Tree and
highlighted in the diagrams.

10. Ignored validation suites: you can enter the active validation suite(s) you would like to exclude
from the Active Validation process.

11. Minimal severity: you can specify the minimal severity level of the constraints to be validated
against. There are five levels of severities:
e >=debug: All constraints will be included in the active validation.

e >=info: Constraints with infos, warnings, errors, or fatal severities will be included.

e >=warning (default): Constraints with warnings, errors, or fatal severities will be
included.

e >=error: Constraints with error or fatal severities will be included.

e Fatal: Only constraints with fatal severities will be included.

To open the Active Validation Options dialog

1. Click Analyze > Validation > Active Validation Options. The Project Options dialog opens.

2. Go to the General project options pane and select Active Validation > Ignored validation
suites.

Validation

To ignore some unused or unimportant active validation suites

1. Click the Browse L] button. The Select Suites dialog opens.

E Select Suites

[] B3 orphaned Proxies [ML Standard Profile::validation Prafile]

£ Parameters Synchronization [UML Skandard Profile::validation Profile]

[] B3 Shape Ownership [UML Standard Prafile: alidation Profile]

[] B3 SwsML_activevalSuite - Activities [MD Customization for SyskL Syl constraints:: S
B SysML_activeValSuite - Blocks [MD Customization for SysML:iSysML constrainks: : Sysh
[] B3 SwsML_active¥alSuite - Constraint Blacks [MD Custorization For SyshLy SyshL consk

[] B3 SwsML_activevalSuite - Mon-normative Extensions [MD Customization For SysML:Sys
[] B3 SysML_active¥alSuite - Ports and Flows [MD Custamization For SyshL::SyslL constrs
£ 3wsML_ackiveMalSuite - Requirements [MD Cuskomizakion For SyskL SyskL conskrain

4 | ¥

apply | Clear all Zancel

Figure 12 -- Select Suites dialog

2. Select the check boxes in order to ignore the active validation suites, and then click Apply. In this
example, three validation suites will be excluded from the validation process.

Additional validation rules / constraints can be added and grouped into an active
validation suite (in a newly-created one or in an existing one).

For more information on the Active Validation feature, see the Model Analysis in
the Validation section in the MagicDraw User Manual.pdf.

7.1.2 SysML Constraints

SysML constraints implementation for SysML validation suites and active validation suites include the following:

Directly Derived
specified from

Constraint Description in OMG OMG

(Description excerpts have been taken from the SysML SysML
Constraint OMG SysML Specifications 1.3 with permission.) spec spec
Binding Connector 1 | The two ends of a Binding Connector must have either 1 8.3.2.1

the same type or types that are compatible, so that
equality of their values can be defined.

Block 7 Within an instance of a SysML Block, the instances of |8.3.2.2
properties with composite aggregation must form an
acyclic graph.

Block 8 Any classifier which specializes a Block must also have |8.3.2.2
the «Block» stereotype applied.

Validation

Constraint
Block

BlockProperty

ValueProperty
DistributedProperty

ValueType

ValueType

AcceptChangeStructural
FeatureEventAction

AcceptChangeStructural
FeatureEventAction

AcceptChangeStructural
FeatureEventAction

AcceptChangeStructural
FeatureEventAction

ChangeStructuralFeatur
eEvent

ChangeStructuralFeatur
eEvent

Constraint Description
(Description excerpts have been taken from the
OMG SysML Specifications 1.3 with permission.)

If isEncapsulated of a block is true, then the block is
treated as a black box. A part typed by this black box
can only be connected to its ports or directly to its outer
boundary.

The block’s properties must be applied with the
matching stereotype.

e Part property, which is the property that is typed by
Block and has composite aggregation, must be
applied with «PartProperty».

e Shared property, which is the property that is typed by
Block and has shared aggregation, must be applied
with «SharedProperty».

e Reference property, which is the property that is
typed by Block and has none aggregation, must be
applied with «ReferenceProperty».

e Value property, which is the property that is typed by
value type, must be applied with «ValueProperty».

The type of a value property must be a value type.

The «DistributedProperty» stereotype may be applied
only to properties of classifiers stereotyped by Block or
Value Type.

Any classifier which specializes a ValueType must also
have the «ValueType» stereotype applied.

If a value is present for the ‘unit’ attribute, the ‘quantity
kind’ attribute must be equal to the value of the ‘quantity
kind’ attribute of the referenced unit.

The action has exactly one trigger, the event of which
must be a Change Structural Feature event.

The action has two result pins with the type and order
the same as the type and order of the structural feature
of an trigger event. The action’s multiplicity is also
compatible with the multiplicity of a structural feature.

The structural feature of a trigger event must be owned
by or inherited to the context of the behavior containing
an action (The context of a behavior is its owning block,
or itself if it is not owned by a block. See the definition in
the UML 2 Superstructure Specification.).

Visibility of the structural feature of the trigger event
must allow access to the object that performs the
action.

The structural feature must not be static.

The structural feature must have exactly one
featuringClassifier.

Directly
specified
in OMG
SysML
spec

8.3.2.4

8.3.2.10

9.3.2.1

9.3.2.1

9.3.2.1

9.3.2.1

9.3.23

9.3.23

Derived
from
OoOMG
SysML
spec

8.3.2.2

8.3.2.2

8.3.2.10

Validation

Constraint

DirectedFeature

DirectedFeature

FlowPort

FlowPort

FlowPort

FlowPort

FlowPort

(non-active)

FlowPort

FlowProperty

FlowProperty

FlowSpecification

Constraint Description
(Description excerpts have been taken from the
OMG SysML Specifications 1.3 with permission.)

DirectedFeature can only be applied to behavioral
features or to properties that do not have FlowProperty
applied, including subset or redefined features

Operations that are not provided must not have or
inherit methods.

A FlowPort must be typed by a Flow Specification,
Block, Signal, or Value Type

If the FlowPort is atomic (isAtomic=True), the direction
must be specified (has a value) and isConjugated must
not specified (has no value).

If the FlowPort is nonatomic and if all of the Flow
Properties of the Flow Specification typing the port have
‘in’ direction, the FlowPort direction will be ‘in’ (or ‘out’ if
isConjugated=true). If all the Flow Properties are ‘out’,
the FlowPort direction will be ‘out’ (or ‘in’ if
isConjugated=true). If the Flow Properties are both ‘in’
and ‘out’, the direction will be ‘inout’.

A FlowPort can be connected (via connectors) to one or
more flow ports that have matching Flow Properties.
There are three options in matching Flow Properties:

e 1. Type Matching: The type being sent is the same
type or a sub-type of the type being received.

e 2. Direction Matching: If the connector connects two
parts that are external to one another, then the
direction of the Flow Properties must be opposite, or
at least one of the ends should be ‘inout’. If the
connector is internal to the owner of one of the flow
ports, then the direction should be the same or at
least one of the ends should be ‘inout’.

e 3. Name Matching: If the type and direction match
several Flow Properties at the other end, the property
that has the same name at the other end is selected.
If there is no such property, then the connection will
then be ambiguous (ill-formed).

The default direction of the atomic FlowPort should be
set to ‘inout’ when creating a new atomic FlowPort or
changing nonatomic to atomic type.

A FlowPort can only be applied to a port which is owned
by a Block or its subtype.

FlowProperties must be typed by a ValueType, Block,
or a Signal.

A Flow Property must have its direction specified and
the default value of the direction should be ‘inout’.

A FlowSpecification can be used as a type of a
FlowPort only.

Directly
specified
in OMG
SysML
spec

9324
9324
Deprecat
ed
Deprecat

ed

Deprecat
ed

Deprecat
ed

9.3.2.7

Derived
from
OoMG
SysML
spec

Deprecat
ed

Deprecat
ed

9.3.2.7

Deprecat
ed

Validation

Directly Derived
specified from

Constraint Description in OMG OMG

(Description excerpts have been taken from the SysML SysML
Constraint OMG SysML Specifications 1.3 with permission.) spec spec
FullPort 1 | Full ports cannot also be proxy ports. This applies even 9.3.2.8

if some of the stereotypes are on subset or redefined

ports.
FullPort 2 Binding connectors cannot link full ports to other 9.3.2.8

composite properties of the block owning the port,
except ports that are not full.

FullPort 3 | Full ports cannot be behavioral. (isBehavior = false). 9.3.2.8
FullPort 4 |Full ports cannot be conjugated (isConjugated = false). 19.3.2.8
InterfaceBlock 1 |Interface blocks cannot own or inherit behaviors and 9.3.2.9

have classifier behaviors or methods for their
behavioral features.

InterfaceBlock 2 |Interface blocks cannot have composite properties that [9.3.2.9
are not ports.
InterfaceBlock 3 Ports owned by interface blocks can only be typed by 9.3.2.9
interface blocks.
InterfaceBlock A | Interface block should inherit from interface block only.
InvocationOnNestedPort |1 ' The onPort property of an invocation action must have 9.3.2.10
Action a value when this stereotype is applied.
InvocationOnNestedPort |2 The port at the first position in the onNestedPort 9.3.2.10
Action property must be owned by the target object of a
stereotyped action.
InvocationOnNestedPort |3 The port at each successive position of the 9.3.2.10
Action onNestedPort property, following the first position, must

be contained in the block that types the port at an
immediately preceding position.

InvocationOnNestedPort |4 'Within a stereotyped invocation action, the onPort port 9.3.2.10
Action of the invocation action must be contained in the type of
the port at the last position of the onNestedPort list.

ltemFlow 2 |An ltemFlow itemProperty must be typed by a Block or 9.3.2.11
by a ValueType.
ltemFlow 3 | ltemProperty is a property of the common (possibly 9.3.2.11

indirect) owner of a source and target.

ltemFlow 5 |If an ItemFlow has an itemProperty, one of the 9.3.2.11
classifiers of conveyed items must be the same as the
type of the item property.

ltemFlow 4 | Item property cannot have a value if the item flow is 9.3.2.11
realized by an Association.

ItemFlow 6 If an ItemFlow has an itemProperty, its name should be 9.3.2.11
the same as the name of the item flow.

ltemFlow A | The conveyed classifiers must be the same or subtype 9.3.2.11
of classifier that type flow property of flow specification.

Validation

Constraint
ProxyPort

ProxyPort
ProxyPort

TriggerOnNestedPort

TriggerOnNestedPort

TriggerOnNestedPort

TriggerOnNestedPort

TriggerOnNestedPort

ConstraintBlock

ConstraintBlock

ConstraintBlock

ConstraintParameter

Constraint Description
(Description excerpts have been taken from the
OMG SysML Specifications 1.3 with permission.)

Proxy ports cannot also be full ports. This applies even
if some of the stereotypes are on subset or redefined
ports.

Proxy ports can only be typed by interface blocks.

Ports owned by the type of a proxy port must be proxy
ports.

The port property of a stereotyped trigger must have
exactly one value, and the value cannot be a full port.

The values of the onNestedPort property must not be
full ports.

The port at the first position in the onNestedPort
property must be owned by a block in which the trigger
is used.

The port at each successive position of the
onNestedPort property, following the first position, must
be contained in the block that types the port at an
immediately preceding position.

The value of the port property of a stereotyped trigger
must be contained in the type of the port at the last
position of the onNestedPort list.

A ConstraintBlock cannot own any structural or
behavioral elements beyond:

e constraint parameters.

e constraint properties that hold internal usages of
constraint blocks.

e binding connectors between its internally nested
constraint parameters.

e constraint expressions that define an interpretation
for the constraint block.

e general purpose model management and
crosscutting elements.

Any classifier which specializes a ConstraintBlock must
also have the «ConstraintBlock» stereotype applied.

Binding connectors are used to bind each parameter of
the constraint block to a property in the surrounding
context.

This constraint parameter has not been used in a
constraint expression of its constraint block.

(This constraint is not explicitly specified in OMG
SysML spec, however, the unused constraint parameter
can imply that there is a high probability of the presence
of an excess constraint parameter or an incorrectly
named constraint parameter.)

Directly
specified
in OMG
SysML
spec

9.3.2.12

9.3.2.12
9.3.2.12

9.3.2.13

9.3.2.13

9.3.2.13

9.3.2.13

9.3.2.13

10.3.2.1

10.3.2.1

Derived
from
OoOMG
SysML
spec

10.3.2.1

Validation

Constraint
ConstraintProperty

(non-active)

Discrete

NoBuffer

Overwrite

AllocateActivityPartition

AllocateActivityPartition

Copy

Copy

Copy
Copy
Copy

Requirement

Requirement
TestCase

streaming

streaming/non-
Streaming

nonStreaming

functionalRequirement

us]

1

Constraint Description

(Description excerpts have been taken from the
OMG SysML Specifications 1.3 with permission.)
A property to which the «ConstraintProperty»
stereotype is applied, must be owned by a SysML
Block.

The «discrete» and «continuous» stereotypes cannot
be applied to the same element at the same time.

The «nobuffer» and «overwrite» stereotypes cannot be
applied to the same element at the same time.

The «overwrite» and «nobuffer» stereotypes cannot be
applied to the same element at the same time.

The represented element of the activity partition which
is applied with «AllocateActivityPartition» stereotype,
should be the Property.

An Action appearing in an AllocateActivityPartition will
be the /client (from) end of an allocate dependency. The
element that represents the AllocateActivityPartition will
be the /supplier (to) end of the same allocate
dependency.

A ‘Copy’ dependency may only be created between two
classes that have the «requirement» stereotype, or a
subtype of the «requirement» stereotype applied.

The text property of the client requirement is
constrained to be a copy of the text property of the
supplier requirement.

A requirement cannot copy more than one requirement.

‘Copy’ dependencies should not form a cyclic graph.

If the supplier requirement has sub requirements,
copies of the sub requirements are made recursively in
the context of the client requirement. ‘Copy’
dependencies are created between each sub
requirement and the associated copy.

A nested classifier of a class that is stereotyped by
«requirement» must also be stereotyped by
«requirement».

A Requirement ID must be unique.

The type of return parameter of the stereotyped model
element must be VerdictKind. (Note this is consistent
with the UML Testing Profile.)

The activity has at least one streaming parameter.

The «streaming» and «nonstreaming» stereotypes
cannot be applied to the same element at the same
time.

The activity has no streaming parameter.
Must be satisfied by an operation or a behavior.

Directly
specified
in OMG
SysML
spec

10.3.2.2

11.3.23

11.3.24

11.3.2.5

16.3.2.1

16.3.2.1

16.3.2.3

16.3.2.5

C1.2

C1.2
C.22

Derived
from
OoMG
SysML
spec

156.3.2.3

15.3.2.3

16.3.2.1
16.3.2.1
16.3.2.1

16.3.2.3

C1.2

Validation

Constraint

interfaceRequirement

performanceRequireme
nt

designConstraint
PropertySpecificType
(non-active)

PropertySpecificType

(non-active)

PropertySpecificType

(non-active)

PropertySpecificType

(non-active)

Constraint Description

(Description excerpts have been taken from the
OMG SysML Specifications 1.3 with permission.)
Must be satisfied by a port, connector, item flow, and/or
a constraint property.

Must be satisfied by a value property.

Must be satisfied by a block or a part.

A classifier to which the «PropertySpecificType»
stereotype is applied must be referenced as the type of
one and only one property.

The name of a classifier to which a
«PropertySpecificType» is applied must be missing
(The "name" attribute of the NamedElement metaclass
must be empty).

Classifiers with the «PropertySpecificType» stereotype
are owned by the block which owns the property which
has the property-specific type.

Property which is typed by the «PropertySpecificType»
should be owned by block or subtypes of block.

Directly
specified
in OMG
SysML
spec

C22
C22
C22

8.3.2.7

8.3.2.7

Derived
from
OoMG
SysML
spec

8.3.2.7

8.3.2.7

Standard stereotypes in SysML plugin are defined in SysML Profile and MD Customization for SysML Profile. Both
profiles have their corresponding API classes: com.nomagic.magicdraw.sysml.util. SysMLProfile and
com.nomagic.magicdraw.sysml.util. MDCustomizationForSysMLProfile, respectively. Each class allows you to:

e Get a string constant for each property of stereotype (tag).
o Get a stereotype element.
e Check if an element is stereotyped.

See index.html in SysMLProfileJavaDoc.zip, located at “plugins/com.nomagic.magicdraw.sysml/openapi/docs”,
for the JavaDoc for the two API classes.

8.1.1 SysML Profile

You need to import com.nomagic.magicdraw.sysml.util.SysMLProfile to use this API class.

Get a string constant for each property of stereotype (tag)

Usage includes “SysMLProfile.STEREOTYPE_PROPERTY_NAME".

For example, SysMLProfile. ALLOCATED_ALLOCATEDFROM_PROPERTY returns a string of “allocatedFrom”.
Get a stereotype element

Usage includes:

e “SysMLProfile.getInstance(project).getStereotype()” - where project refers to a project that uses
SysML Profile.

e “SysMLProfile.getInstance(element).getStereotype()” - where element refers to the element in a
project that uses SysML Profile.

For example, SysMLProfile.getInstance(project).getBlock() returns the reference to the «Block» stereotype object.
Check if an element is stereotyped
Usage includes “SysMLProfile.isStereotype(Elem)” - where Elem is the element you would like to check.

For example, given an element “Elem”, SysMLProfile.isBlock(Elem) returns True if the element “Elem” has «Block»
stereotype applied, and returns false otherwise.

8.1.2 MD Customization for SysML Profile

You need to import com.nomagic.magicdraw.sysml.util. MDCustomizationForSysMLProfile to use this API class.
Get a string constant for each property of stereotype (tag)

Usage includes “MDCustomizationForSysMLProfile. STEREOTYPE_PROPERTY_NAME”.

Stereotype Usage

For example, MDCustomizationForSysMLProfile. NUMBEROWNER_PREFIX_PROPERTY returns a string of “prefix”.
Get a stereotype element

Usage includes:

e “MDCustomizationForSysMLProfile.getInstance(project).getStereotype()” - where project refers to
the project which uses MD Customization for SysML Profile.

e “MDCustomizationForSysMLProfile.getInstance(element).getStereotype()” - where element refers
to the element in the project which uses MD Customization for SysML Profile.

For example, MDCustomizationForSysMLProfile.getInstance(project).getPartProperty() returns the reference to
the «PartProperty» stereotype object.

Check if an element is stereotyped

Usage includes “MDCustomizationForSysMLProfile.isStereotype(Elem)” - where Elem is the element you would like
to check.

For example, given an element “Elem”, MDCustomizationForSysMLProfile.isValueProperty(Elem) returns True if the
element “Elem” has «ValueProperty» stereotype applied, and returns false otherwise.

8.1.3 SysML Profile APl Changes

SysML Profile APl changes were made in relation to the SysML 1.4 support.

The following constants were moved from the com.nomagic.magicdraw.sysmil.util. SysMLProfile to
com.nomagic.magicdraw.sysml.util. MDCustomizationForSysMLProfile:

public static final String CONSTRAINTPROPERTY_STEREOTYPE = "ConstraintProperty";
public static final String QUANTITYKIND_STEREOTYPE = "QuantityKind";

public static final String QUANTITYKIND_DEFINITIONURI_PROPERTY = "definitionURI";
public static final String QUANTITYKIND_DESCRIPTION_PROPERTY = "description";
public static final String QUANTITYKIND_SYMBOL_PROPERTY = "symbol";

public static final String UNIT_STEREOTYPE = "Unit";

The following methods were moved from the com.nomagic.magicdraw.sysmil.util. SysMLProfile to the
com.nomagic.magicdraw.sysml.util. MDCustomizationForSysMLProfile:

getConstraintProperty()
getQuantityKind()
getUnit()
isQuantityKind()
isUnit()
isConstraintProperty()

The constant NESTEDCONNECTOREND_PROPERTYPATH_PROPERTY changed to
ELEMENTPROPERTYPATH_PROPERTYPATH_PROPERTY.

SysML classes for open API

Classes which are available for open API are included in SysML plugin open APl documentation. Find these in
<SysML plugin installation directory>\openapi\docs.

The com.nomagic.magicdraw.sysmil.util. SysMLUTtilities class was added to the open APIs. It provides utility
methods for easier work with SysML projects.

Methods and classes marked as deprecated do not support the development of external plugins.

	Contents
	1.1 System Engineer Perspective
	2.1 SysML Diagrams
	2.1.1 SysML Block Definition Diagram (BDD)
	2.1.2 SysML Internal Block Diagram (IBD)
	2.1.3 SysML Package Diagram
	2.1.4 SysML Parametric Diagram
	2.1.5 Requirements Diagram
	2.1.6 SysML Activity Diagram
	2.1.7 SysML Use Case Diagram
	2.1.8 Views and Viewpoints Diagram
	2.1.9 SysML Sequence Diagram
	2.1.10 SysML State Machine Diagram

	3.1 Requirements Table
	3.2 Dependency Matrix
	3.2.1 SysML Editable Matrices
	3.2.1.1 SysML Allocation Matrix
	3.2.1.2 Satisfy Requirement Matrix
	3.2.1.3 Verify Requirement Matrix
	3.2.1.4 Refine Requirement Matrix
	3.2.1.5 Derive Requirement Matrix
	3.2.1.6 Creating Editable Matrices
	3.2.1.7 Building Matrices
	3.2.1.8 Editing Matrix

	3.3 Predefined Relation Maps
	4.1 SysML Block Definition Diagram Elements
	4.1.1 Block
	4.1.2 Domain
	4.1.3 External
	4.1.4 System
	4.1.5 Subsystem
	4.1.6 System Context
	4.1.7 Constraint Block
	4.1.8 Interface Block
	4.1.9 Flow Specification
	4.1.10 Value Type
	4.1.11 Quantity Kind
	4.1.12 Unit

	4.2 SysML Internal Block Diagram Elements
	4.2.1 Part Property
	4.2.2 Shared Property
	4.2.3 Reference Property
	4.2.4 Value Property
	4.2.5 Constraint Property
	4.2.6 Distributed Property
	4.2.7 Flow Port
	4.2.8 Full Port
	4.2.9 Proxy Port
	4.2.10 Directed Feature

	4.3 Views and Viewpoints Diagram Elements
	4.3.1 View
	4.3.2 Viewpoint
	4.3.3 Conform

	4.4 SysML Parametric Diagram Elements
	4.4.1 Moe
	4.4.2 Objective Function
	4.4.3 Binding Connector

	4.5 SysML Requirements Diagram Elements
	4.5.1 Requirement
	4.5.2 Extended Requirement
	4.5.3 Functional Requirement
	4.5.4 Interface Requirement
	4.5.5 Performance Requirement
	4.5.6 Physical Requirement
	4.5.7 Design Constraint
	4.5.8 Business Requirement
	4.5.9 Usability Requirement
	4.5.10 Test Case
	4.5.11 Satisfy
	4.5.12 Verify
	4.5.13 Derive
	4.5.14 Copy

	4.6 SysML Activity Diagram Elements
	4.6.1 Accept Change Structural Feature Event Action
	4.6.2 Change Structural Feature Event
	4.6.3 Invocation on Nested Port Action
	4.6.4 Trigger on Nested Port

	4.7 SysML Use Case Diagram Elements
	4.7.1 External System
	4.7.2 Sensor
	4.7.3 Boundary System
	4.7.4 User System
	4.7.5 Actuator
	4.7.6 Environmental Effect

	5.1 Generic Procedures
	5.1.1 Creating SysML Projects
	5.1.2 Creating SysML Projects From Templates
	5.1.3 Using OMG SysML Style
	5.1.4 Using QUDV Model Library
	5.1.5 Using Quick Search Dialog
	5.1.6 Using Structure Browser
	5.1.6.1 Specific display options

	5.1.7 Generating SysML reports
	5.1.8 Context-Specific Value Compartments
	5.1.8.1 Progressive Reconfiguration
	5.1.8.2 Deep Reconfiguration
	5.1.8.3 Context-Specific Value Compartments

	5.1.9 Feature-based Compartments
	5.1.9.1 Expanding and Suppressing Feature-based Compartments
	5.1.9.2 Displaying Options in Feature-based Compartments

	5.1.10 NEW! Managing Element Groups
	5.1.11 NEW! Displaying Rake icon on symbol
	5.1.12 Transferring mathematical expressions from MATLAB source code into the model

	5.2 Diagram Specific Procedures
	5.2.1 SysML Block Definition Diagram Procedures
	5.2.1.1 Inserting a new SysML property
	5.2.1.2 Inserting a new SysML diagram
	5.2.1.3 Using SysML-Style compartments
	5.2.1.4 Creating an association block
	5.2.1.5 Creating a SysML Internal Block Diagram
	5.2.1.6 Representing association roles as block properties
	5.2.1.7 Creating instances of blocks with complex structure
	5.2.1.8 SysML callout box
	5.2.1.9 NEW! Managing Interfaces of the Block
	5.2.1.10 NEW! Managing Block properties

	5.2.2 SysML Internal Block Diagram Procedures
	5.2.2.1 Creating Ports
	5.2.2.2 Displaying Parts
	5.2.2.3 Displaying Ports
	5.2.2.4 NEW! Displaying Direction Prefixes of Proxy and Full Ports
	5.2.2.5 NEW! Displaying Combined Direction on Proxy Port
	5.2.2.6 NEW! Displaying Direction Prefixes of Flow Property
	5.2.2.7 Using Edit Compartment
	5.2.2.8 Show Default Value and Show Slot Type
	5.2.2.9 Provided/Required Interfaces
	5.2.2.10 NEW! Managing Interfaces of the Proxy Port
	5.2.2.11 Create Directed Features and Specify Feature Directions
	5.2.2.12 Displaying Structures of Blocks in Compartments and IBDs
	5.2.2.13 Converting nested parts to dot notation
	5.2.2.14 Extracting structure
	5.2.2.15 Creating a flow port

	5.2.3 SysML Package Diagram Procedures
	5.2.3.1 Using package element

	5.2.4 SysML Parametric Diagram Procedures
	5.2.4.1 Displaying parameters
	5.2.4.2 Creating automatic constraint parameters
	5.2.4.3 Creating a binding connector

	5.2.5 Requirements Diagram Procedures
	5.2.5.1 Changing requirement type
	5.2.5.2 Creating Requirements Diagram for sub-requirements
	5.2.5.3 Numbering requirement IDs
	5.2.5.4 Using requirement element

	5.2.6 SysML Activity Diagram Procedures
	5.2.6.1 Select Operation
	5.2.6.2 Dynamic Centerlines
	5.2.6.3 Decomposing activities

	5.2.7 SysML Use Case Diagram Procedures
	5.2.7.1 Numbering Use Cases

	5.2.8 SysML Sequence Diagram Procedures

	6.1 Model Library for Quantities, Units, Dimensions, and Values (QUDV)
	6.1.1 QUDV Model Library
	6.1.1.1 QUDV
	6.1.1.2 SI Definitions
	6.1.1.3 SI Specializations
	6.1.1.4 SI Value Type Library

	7.1 Validation
	7.1.1 Active Validation
	7.1.1.1 Active Validation Options

	7.1.2 SysML Constraints

	8.1 Stereotype Usage
	8.1.1 SysML Profile
	8.1.2 MD Customization for SysML Profile
	8.1.3 SysML Profile API Changes

	8.2 SysML classes for open API

