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Abstract

The task of detecting dialogue breakdown, the aim of which is to detect whether a system ut-
terance causes dialogue breakdown in a given dialogue context, has been actively investigated
in recent years. However, it is not clear which evaluation metrics should be used to evaluate
dialogue breakdown detectors, hindering progress in dialogue breakdown detection. We propose
an approach of finding appropriate metrics for evaluating such detectors. In our approach, we
first enumerate possible evaluation metrics then rank them on the basis of system ranking sta-
bility and discriminative power. By using the submitted runs (results of dialogue breakdown
detection of participants) of a dialogue breakdown detection challenge, we experimentally found
that MSE(NB+PB,B) and MSE(NB,PB,B), which represent the mean squared error calculated
by comparing a detector’s output distribution and a gold distribution, are appropriate metrics for
dialogue breakdown detection.

1 Introduction

We are witnessing an emergence of chat-oriented dialogue systems due to their social and entertainment
aspects (Wallace, 2009; Higashinaka et al., 2014a; Venkatesh et al., 2017). However, since the range of
topics in chats is diverse and the content can be quite complex, it is often the case that such systems make
inappropriate utterances, leading to dialogue breakdown, a situation in which a user and system cannot
proceed with a dialogue (Martinovski and Traum, 2003).

To avoid such situations, the task of detecting dialogue breakdown (Higashinaka et al., 2016), the aim
of which is to detect whether a system utterance causes dialogue breakdown in a given dialogue context,
has been actively investigated. To cultivate techniques for detecting dialogue breakdown, evaluation
workshops dedicated to dialogue breakdown detection (dialogue breakdown detection challenges; DB-
DCs) have been held (Higashinaka et al., 2017). The participants have developed dialogue breakdown
detectors that output a dialogue breakdown label (B: breakdown, PB: possible breakdown, or NB: not a
breakdown) and a probability distribution of these labels for a given system utterance in a given context.
The definitions of the labels are given as follows.

NB: It is easy to continue the conversation after the system utterance in question.

PB: It is difficult to continue the conversation smoothly after the system utterance in question.

B: It is difficult to continue the conversation after the system utterance in question.

For example, consider the following piece of dialogue.
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S1: It’s nice to go shopping alone.
U1: I agree. That’s nice.
S2: Shopping takes time.
U2: Window shopping is also fun.
S3: It’s fun to go shopping with somebody.

In the above dialogue, system utterances are prefixed with S and user utterances with U. The dialogue
context is from S1 to U2, and the target utterance for dialogue breakdown detection is S3 (underlined).
In this example, S3 is likely to cause a dialogue breakdown because S3 contradicts S1. Therefore, a
detector that classifies this as B or PB will be regarded as accurate.

The performance of dialogue breakdown detectors in DBDCs is evaluated using a variety of evaluation
metrics (there are nine metrics used in DBDCs), including those that compare a detector’s output label
with a gold label (classification-related metrics) and those that compare a detector’s output distribution
with a gold distribution (distribution-related metrics). The gold distribution is derived from the annota-
tions of dialogue breakdown labels by multiple annotators; in DBDCs, 30 annotators have been used for
each utterance to derive the gold distribution. Although several techniques for detecting dialogue break-
down have been proposed, the current problem is that, since there are many evaluation metrics used, it is
not clear on which metric researchers should focus. To propel progress in dialogue breakdown detection,
we should determine which metrics are appropriate.

We propose an approach of finding appropriate metrics for evaluating dialogue breakdown detectors.
In our approach, we first enumerate possible evaluation metrics (22 in all), including those used in
DBDCs as well as those we newly added. Then, we rank the evaluation metrics on the basis of two
criteria, i.e., system ranking stability and discriminative power, that are used in information retrieval (IR)
research (Webber et al., ). By using submitted DBDC runs (results of dialogue breakdown detection of
participants), we experimentally found appropriate evaluation metrics.

In the next section, we cover related work. In Section 3, we describe our approach, including the
enumeration of possible evaluation metrics and criteria for ranking the metrics. In Section 4, we present
the ranking of the metrics and determine which are appropriate. Finally, in Section 5, we summarize the
paper and mention future work.

2 Related work

There is a good body of work on detecting problematic situations in task-orientated dialogue systems
(Walker et al., 2000b; Lendvai et al., 2002; Lopes et al., 2016; Meena et al., 2015). In these studies,
features, such as speech-recognition results, language-understanding results, and prosodic information,
were extracted from user/system utterances and used to train a model that can detect problematic situa-
tions (also called “miscommunications” or “hotspots”).

Detecting problematic system utterances in chat-oriented dialogue systems has been actively studied.
For example, Xiang et al. (2014) use machine-learning techniques to classify system utterances as prob-
lematic or non-problematic by using features related to user intent and user sentiment. Higashinaka et
al. (2014b) proposed incorporating various dialogic features, such as dialogue-act types and question
types, to detect incoherent system utterances. More recently, three series of DBDCs have been held (Hi-
gashinaka et al., 2017), and a number of teams participated and submitted their runs, showing growing
interest in dialogue breakdown detection.

In contrast to this increasing attention, there has been little research on the evaluation metrics for
dialogue breakdown detection. In past DBDCs, nine metrics were used without much emphasis on any
one in particular, making it difficult for the participants to tune their detectors and for the organizers
to determine the best detector. The problem is that, in task-oriented dialogue systems, problematic
situations can be determined relatively easily with regards to the task at hand; however, in chat-oriented
dialogue systems, deciding if an utterance is problematic can be highly subjective, making it difficult to
define the gold label. The use of distribution-related metrics may solve this problem; however, it is not
clear if they are any better than classification-related metrics.
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In this study, we empirically verified which metrics are appropriate in dialogue breakdown detection.
To this end, we turned to techniques used in IR studies and used the criteria of system ranking stability
and discriminative power (see Section 3) to find appropriate evaluation metrics. Since IR-related work
requires evaluating a system’s output by comparing it with relevance assessment results obtained from
multiple assessors, the setting of dialogue breakdown detection is similar to that in IR research; hence,
the same technique can be applied. We acknowledge that the use of correlation is commonly used in
dialogue research (Walker et al., 2000a; Higashinaka et al., 2004; Liu et al., 2016) to find appropriate
evaluation metrics; however, this is only applicable when the target is a scalar value. In our case, gold
data take the form of distributions, making the application of correlation-based approaches difficult.

A study on annotating chat-oriented dialogue systems with three labels (invalid, acceptable, valid) is
currently underway in the WOCHAT initiative1 (Charras et al., 2016; Curry and Rieser, 2016), but little
research has been done to estimate these labels. Since the labels in that study are similar to those used
in dialogue breakdown detection, we believe the proposed approach and the appropriate metrics found
with the approach will be useful for that study.

3 Approach

We empirically verified which metrics are appropriate in dialogue breakdown detection. We first enu-
merated as many evaluation metrics as possible to create an exhaustive list of candidates for the metrics.
Then, we ranked the metrics according to the selection criteria used in IR, i.e., system ranking stability
and discriminative power.

3.1 Candidates for evaluation metrics

The metrics in DBDCs can be categorized into two types: classification-related and distribution-related
(Higashinaka et al., 2016).

Classification-related metrics Classification-related metrics are used to evaluate the correctness of the
classification of dialogue breakdown labels. These values are calculated by comparing the output
label of the dialogue breakdown detector and the gold label determined by majority voting from
the gold distribution. The value of a classification-related metric is calculated for each dialogue;
for example, to derive an accuracy, we divide the number of correctly predicted labels by the total
number of labels (system utterances) within a dialogue.

Distribution-related metrics Distribution-related metrics are used to evaluate the output probability
distribution of dialogue breakdown labels, which are calculated by comparing the distribution of
the labels predicted by the dialogue breakdown detector with the gold distribution. The value of a
distribution-related metric is calculated for each utterance.

The nine evaluation metrics in past DBDCs are naturally our candidates. However, it is not clear whether
these metrics are sufficient. Therefore, we added several evaluation metrics that we thought were worth
considering. Table 1 lists all metrics used in this study; (2)–(6), (9)–(10), (14)–(16), and (20)–(22) are
our newly added metrics.

We added (2) and (3) because, although cases in which PB+B or NB+PB is regarded as a single
label were considered for mean squared error (MSE) and Jensen-Shannon divergence (JSD), these cases
were not considered for accuracy. We also added (4)–(6), (9)–(10), (14)–(16), and (20)–(22), which
are weighted metrics. Since we believe that utterances with a high agreement of annotations need to
be treated with more emphasis than those with a low agreement, we devised weighted metrics. In this
paper, we use the Simpson index for weighting. We calculate the weight w for each utterance with the
following equation:

w =
∑

l∈{NB,PB,B}

p2l , (1)

1http://workshop.colips.org/wochat/
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Table 1: Evaluation metrics. “+w” means that metrics are weighted. See Eq. (1) for deriving weight in
weighted metrics.

Metric Description
Classification-related metrics

(1) Accuracy(NB,PB,B) For the system utterances in a dialogue, we compare the predicted labels and
their gold labels. Then, the accuracy is calculated by dividing the number of
correctly classified labels by the total number of labels.

(2) Accuracy(NB,PB+B) Same as (1) when PB and B are regarded as a single label.
(3) Accuracy(NB+PB,B) Same as (1) when NB and PB are regarded as a single label.
(4) Accuracy+w(NB,PB,B)

cn =

{
1, if predicted label matches gold label;
0, otherwise;

Accuracy =

∑N
n=1 cnwn∑N
n=1 wn

n means utterance index, N means the total number of utterances, and w means
the weight.

(5) Accuracy+w(NB,PB+B) Same as (4) when PB and B are regarded as a single label.
(6) Accuracy+w(NB+PB,B) Same as (4) when NB and PB are regarded as a single label.
(7) F1(B) For the system utterances in a dialogue, we compare the predicted labels and

their gold labels. Then, we derive the F1 for the classification of B labels by the
harmonic mean of precision and recall for B labels. See (9) for the definition of
precision and recall.

(8) F1(PB+B) Same as (7) when PB and B are regarded as a single label.
(9) F1+w(B)

predn(labels) =

{
1, if predicted label is in labels;
0, otherwise;

goldn(labels) =

{
1, if gold label is in labels;
0, otherwise;

TP =

N∑
n=1

predn(B)goldn(B)wn

FP =

N∑
n=1

predn(B)goldn(NB, PB)wn

TN =

N∑
n=1

predn(NB, PB)goldn(NB, PB)wn

FN =

N∑
n=1

predn(NB, PB)goldn(B)wn

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2Precision · Recall

Precision + Recall

(10) F1+w(PB+B) Same as (9) when PB and B are regarded as a single label.
Distribution-related metrics

(11) JSD(NB,PB,B) For each system utterance, we compare the predicted distribution of the three
labels (NB, PB, and B) and that of the gold labels. Then, Jensen-Shannon di-
vergence is calculated.

(12) JSD(NB,PB+B) Same as (11) when PB and B are regarded as a single label.
(13) JSD(NB+PB,B) Same as (11) when NB and PB are regarded as a single label.
(14) JSD+w(NB,PB,B) The weighted version of (11). The value is weighted by w in Eq. (1).
(15) JSD+w(NB,PB+B) Same as (14) when PB and B are regarded as a single label.
(16) JSD+w(NB+PB,B) Same as (14) when NB and PB are regarded as a single label.
(17) MSE(NB,PB,B) For each system utterance, we compare the predicted distribution of the three

labels (NB, PB, and B) and that of the gold labels. Then, mean squared error is
calculated.

(18) MSE(NB,PB+B) Same as (17) when PB and B are regarded as a single label.
(19) MSE(NB+PB,B) Same as (17) when NB and PB are regarded as a single label.
(20) MSE+w(NB,PB,B) The weighted version of (17). The value is weighted by w in Eq. (1).
(21) MSE+w(NB,PB+B) Same as (20) when PB and B are regarded as a single label.
(22) MSE+w(NB+PB,B) Same as (20) when NB and PB are regarded as a single label.
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where pl means the probability of each label l in the gold probability distribution. For example, if the
probability distribution is (pNB, pPB, pB) = (0.33, 0.33, 0.33), w = 0.33, and for (pNB, pPB, pB) =
(0.0, 0.0, 1.0), w = 1.0. Thus, the higher the agreement of annotations is, the higher the weight of
utterances becomes. In Table 1, weighted metrics are indicated with “+w.” The use of this type of
weighting has been considered in previous studies (Sakai, ; Shang et al., 2017) as “unanimity-aware
gain” and has shown promising results, making systems more distinguishable; hence, our adoption of
weighting.

3.2 Criteria of appropriate evaluation metrics
To select the most appropriate evaluation metrics from our metric candidates, we use two criteria (system
ranking stability and discriminative power (Webber et al., )) commonly used in IR. To calculate these
values, we use the results of dialogue breakdown detection of multiple dialogue breakdown detection
systems (typically called “runs” in evaluation workshops).

System ranking stability We can assume that an appropriate evaluation metric should be able to rank
runs more or less in the same order independent of the dataset. System ranking stability can check
whether the rankings of runs are stable across multiple datasets. To calculate stability, various
datasets are prepared first. Then, for each dataset, the ranking of the runs is created. After that,
the rank correlations of the ranking pairs are calculated and averaged to derive the system ranking
stability.

Discriminative power We can assume that an appropriate evaluation metric should be as sensitive to the
difference in runs as possible. By using each evaluation metric, we compare run pairs and see how
many they significantly differ. We can regard the metrics with the most run pairs with statistically
significant difference as the most appropriate evaluation metrics.

4 Evaluation

We experimentally searched for appropriate evaluation metrics that meet the criteria of system ranking
stability and discriminative power. We ranked evaluation metrics for each language (note that the DBDC
datasets contain both English and Japanese data) and calculated the average ranks so that we could
select highly ranked ones across languages. In what follows, we describe the datasets we used and the
procedure for calculating the values for the criteria.

4.1 Datasets
We used both the English and Japanese dialogue datasets of DBDC32 and the results of the submitted
runs of the participants in DBDC3 (for details, see (Higashinaka et al., 2017)).

DBDC3 datasets The datasets were collected using four English systems [TKTK (Yu et al., 2016), IRIS
(Banchs and Li, 2012), CIC3, and YI4] and three Japanese systems [DCM (Onishi and Yoshimura,
2014), DIT (Tsukahara and Uchiumi, 2015), and IRS (IR-status-based system from (Ritter et al.,
2011)]. Both datasets include 50 dialogue sessions, totaling 350 sessions. All dialogue sessions
were 20 or 21 utterances long and included 10 system responses, each of which was annotated with
dialogue breakdown labels by 30 annotators.

Submitted runs In the challenge, each participating team could submit up to three runs for each lan-
guage. There were 12 runs for both English and Japanese. We also used the results of two baselines.
One is a majority baseline that outputs the most frequent dialogue breakdown label in each system’s
development data with averaged probability distributions. The other was a baseline using condi-
tional random fields (CRFs) that labels utterance sequences with the three breakdown labels by

2https://dbd-challenge.github.io/dbdc3/data/
3This dataset comes from the human evaluation round of the conversational intelligence challenge (http://convai.

io/data/)
4https://www.slideshare.net/sld7700/skillbased-conversational-agent-80976302
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Table 2: Submitted runs in English summarized by their key features. MemN2N and ETR denote end-
to-end memory network and extra trees regressor, respectively.

Run Model Word/Sentence Bag of Utterance Turn
embedding words similarity index

KTH run1 (Lopes, 2017) SVM ✓
KTH run2 LSTM ✓
KTH run3 LSTM ✓ ✓
PLECO run1 (Saito and Iki, 2017) MemN2N ✓
PLECO run2 MemN2N ✓
RSL17BD run1 (Kato and Sakai, 2017) ETR ✓ ✓ ✓
RSL17BD run2 ETR ✓ ✓ ✓
RSL17BD run3 ETR ✓ ✓ ✓
NCDS run1 (Park et al., 2017) RNN ✓
NCDS run2 RNN ✓
NCDS run3 RNN ✓ ✓
SWPD run1 (Xie and Ling, 2017) Bi-LSTM ✓
CRF Baseline CRF ✓
Majority Baseline

Table 3: Submitted runs in Japanese summarized by their key features. EoR denotes ensemble of regres-
sors.

Run Model Word/Sentence Bag of Utterance Turn
embedding words similarity index

PLECO run1 (Saito and Iki, 2017) MemN2N ✓
PLECO run2 MemN2N ✓
PLECO run3 MemN2N ✓
RSL17BD run1 (Kato and Sakai, 2017) ETR ✓ ✓ ✓
RSL17BD run2 ETR ✓ ✓ ✓
RSL17BD run3 ETR ✓ ✓ ✓
OUARS run1 (Takayama et al., 2017) CNN ✓
OUARS run2 CNN, LSTM ✓
OUARS run3 CNN, LSTM ✓
NTTCS run1 (Sugiyama, 2017) EoR ✓ ✓ ✓
NTTCS run2 EoR ✓ ✓ ✓
NTTCS run3 EoR ✓ ✓ ✓
CRF Baseline CRF ✓
Majority Baseline

using CRFs. The features used were words in a target utterance and the previous utterances. For the
probability distribution, a probability of 1.0 was given to a label determined by the CRFs. Tables
2 and 3 summarize the submitted runs of the participants in English and Japanese, respectively.
The tables indicate that many approaches have been tested, including those that use recent neu-
ral network models as well as those that use more conventional support vector machines (SVMs),
random-forest-based methods such as extra trees regressor, and the ensemble of regressors.

4.2 Evaluation procedure
For system ranking stability, we used the rank correlation of ranked runs over different datasets to eval-
uate the metrics described in Section 3.2. There are two major rank-correlation statistics, Kendall’s
τ (Kendall, 1938) and Spearman rank correlation coefficient (Spearman, 1904). Because Kendall’s τ has
become a standard statistic for comparing the correlation between two ranked lists (Yilmaz et al., 2008),
we used it to examine our rank correlation.

For both English and Japanese datasets, we first merged all data. Then, we created two subsets of
data; each subset created by randomly sampling 20% from the merged data. For each metric, we ranked
the runs for each subset to derive two run rankings. Finally, we calculated Kendall’s τ between these
rankings. To obtain stable results, we repeated this process 500 times and obtained the average value of
Kendall’s τ .

Regarding discriminative power, for each dataset of English and Japanese, we calculated the percent-
age of runs with statistical differences for all run pairs and ranked metrics according to that percentage.
After that, we calculated the average rank over English and Japanese. We did this for each evaluation
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Table 4: Results of system ranking stability
English Japanese

Metrics Kendall’s τ Rank Kendall’s τ Rank Average rank
MSE(NB+PB,B) 0.81 3 0.85 2 2.5
MSE(NB,PB,B) 0.79 6 0.86 1 3.5
MSE+w(NB+PB,B) 0.82 2 0.83 5 3.5
JSD(NB+PB,B) 0.81 4 0.83 4 4.0
JSD+w(NB+PB,B) 0.82 1 0.77 9 5.0
JSD(NB,PB,B) 0.77 12 0.85 3 7.5
JSD+w(NB,PB+B) 0.79 5 0.63 13 9.0
MSE(NB,PB+B) 0.78 11 0.77 8 9.5
JSD(NB,PB+B) 0.78 10 0.74 10 10.0
MSE+w(NB,PB+B) 0.78 8 0.68 12 10.0
MSE+w(NB,PB,B) 0.73 14 0.82 6 10.0
JSD+w(NB,PB,B) 0.75 13 0.78 7 10.0
Accuracy(NB+PB,B) 0.79 7 0.58 16 11.5
Accuracy+w(NB+PB,B) 0.78 9 0.61 15 12.0
Accuracy+w(NB,PB,B) 0.3 21 0.68 11 16.0
F1+w(B) 0.66 16 0.5 17 16.5
F1(B) 0.66 15 0.48 18 16.5
Accuracy(NB,PB,B) 0.26 22 0.63 14 18.0
F1(PB+B) 0.65 17 0.21 20 18.5
Accuracy(NB,PB+B) 0.62 18 0.18 21 19.5
Accuracy+w(NB,PB+B) 0.56 20 0.26 19 19.5
F1+w(PB+B) 0.61 19 0.14 22 20.5

Table 5: Average rank of each metric in terms of their discriminative power
English Japanese

Metrics % of run pairs with sig-
nificant difference

Rank % of pairs found with
significant difference

Rank Average rank

MSE(NB,PB,B) 67.0 6 76.9 2 4.0
MSE(NB+PB,B) 70.3 2 70.3 8 5.0
JSD(NB+PB,B) 67.0 6 74.7 4 5.0
MSE+w(NB+PB,B) 68.1 4 72.5 7 5.5
MSE(NB,PB+B) 68.1 4 64.8 9 6.5
MSE+w(NB,PB,B) 61.5 12 76.9 2 7.0
Accuracy(NB+PB,B) 71.4 1 52.7 14 7.5
JSD+w(NB+PB,B) 62.6 9 73.6 6 7.5
JSD(NB,PB,B) 60.4 14 81.3 1 7.5
JSD(NB,PB+B) 63.7 8 64.8 9 8.5
Accuracy+w(NB+PB,B) 70.3 2 50.5 16 9.0
JSD+w(NB,PB,B) 60.4 14 74.7 4 9.0
MSE+w(NB,PB+B) 61.5 12 60.4 11 11.5
F1+w(B) 62.6 9 50.5 16 12.5
F1(B) 62.6 9 48.4 18 13.5
JSD+w(NB,PB+B) 59.3 16 59.3 12 14.0
Accuracy+w(NB,PB,B) 19.8 21 58.2 13 17.0
Accuracy(NB,PB,B) 14.3 22 52.7 14 18.0
F1(PB+B) 56.0 17 15.4 22 19.5
Accuracy(NB,PB+B) 52.7 18 16.5 21 19.5
F1+w(PB+B) 50.5 19 17.6 20 19.5
Accuracy+w(NB,PB+B) 37.4 20 20.9 19 19.5

metric. We used Discpower 5 (Sakai, 2007) to calculate the discriminative power.

4.3 Results
Table 4 shows the ranking results for system ranking stability. Kendall’s τ for both English and Japanese
are shown. The average rank of the two ranks were used for the final measurement for stability. Overall,
the distribution-related metrics (MSE, JSD) outperformed the classification-related ones. Among the
distribution-related metrics, MSE(NB+PB,B) was the best in terms of system ranking stability. Also,
the weighted metrics did not perform well when compared to the non-weighted ones, indicating that the
weights were not that effective.

5http://research.nii.ac.jp/ntcir/tools/discpower-en.html
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Table 6: Average rank of system ranking stability and discriminative power
Metrics Rank of system ranking

stability
Rank of discriminative
power

Average rank

MSE(NB+PB,B) 2.5 5.0 3.8
MSE(NB,PB,B) 3.5 4.0 3.8
JSD(NB+PB,B) 4.0 5.0 4.5
MSE+w(NB+PB,B) 3.5 5.5 4.5
JSD+w(NB+PB,B) 5.0 7.5 6.3

Table 5 shows the results for discriminative-power evaluation (significance level α = .05). We show
the percentage of runs with statistically significant differences for all run pairs (the number of runs for
both languages was 14; therefore, the number of all run pairs was

(
14
2

)
= 91). The distribution-related

metrics (MSE, JSD) were ranked highly. Because the ranks of weighted metrics were low, similarly to
the results for system ranking stability, our weighting did not seem to contribute much to discriminative
power.

4.4 Determining appropriate metrics
Table 6 shows the top five evaluation metrics by their average rank for system ranking stability and
discriminative power; MSE(NB+PB,B) and MSE(NB,PB,B) were the best evaluation metrics with the
same average rank.

Because MSE and JSD were generally ranked high, we can confirm that the distribution-related metrics
were more appropriate than the classification-related ones. This is probably because distribution-related
metrics can use more information, which is lost when converting the distribution into a single label, as
in classification-related metrics. We can also see that there was no difference between when NB and
B were regarded as a single label, i.e., (NB+PB,B) and when all labels were separate, i.e., (NB,PB,B).
Our speculation is that distinguishing between NB+PB and B is as difficult as distinguishing among
the three labels. To verify this, we calculated the inter-annotator agreement (Fleiss’ κ) of dialogue
breakdown annotations. Regarding the English dataset, we found that when all labels are separate, κ is
0.065. When NB and PB are regarded as a single label, κ is 0.077, and when PB and B are regarded
as a single label, κ is 0.095. The same tendency of κ was also found for the Japanese dataset. This
indicates that distinguishing between NB+PB and B could be more difficult than between NB and PB+B
and more similar to distinguishing among the three labels, supporting our speculation to some extent. In
accordance with the results for system ranking stability and discriminative power, the weighted metrics
were not effective. One possible reason could be that the weights are just making easy-to-guess problems
stand out and de-emphasizing difficult-to-guess ones in the evaluation, making it difficult to differentiate
the runs.

5 Summary and future work

To clarify which evaluation metrics should be used to evaluate dialogue breakdown detectors, we pro-
posed an approach of finding the appropriate metrics for evaluating the detectors. We first enumerated
possible evaluation metrics then ranked them on the basis of system ranking stability and discriminative
power. By using the submitted runs, we experimentally found that MSE(NB+PB,B) and MSE(NB,PB,B)
were appropriate metrics. As a final note, if we were to recommend a single metric, we suggest using
MSE(NB+PB,B) because only two-way (NB+PB and B) annotations will be necessary, lowering the cost
for preparing datasets.

For future work, we plan to consider combinations of multiple evaluation metrics to create more
appropriate metrics. We also plan to enumerate other metrics because our list of metrics may not be
sufficient. Although weight was found not to be that effective in this study, we plan to consider other
weighting methods and pursue the reasons for their poor performance because we intuitively feel that
weighting high-agreement utterances seems reasonable. Finally, we also want to improve the dialogue
breakdown detector we are developing by using our proposed approach of finding evaluation metrics and
improve our chat-oriented dialogue system.
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