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ABSTRACT 

This report is the documentation for Task 1 of the Statewide Archaeological Predictive Model 
Set project sponsored by the Pennsylvania Department of Transportation (PennDOT). This 
project was solicited under Contract #355I01, Transportation Research, Education, and 
Technology Transfer ITQ, Category #05 – Environmental Research. The goal of this project is to 
develop a set of statewide predictive models to assist the planning of transportation projects. 
PennDOT is developing tools to streamline individual projects and facilitate Linking Planning 
and NEPA, a federal initiative requiring that NEPA activities be integrated into the planning 
phases for transportation projects. The purpose of Linking Planning and NEPA is to enhance the 
ability of planners to predict project schedules and budgets by providing better environmental 
and cultural resources data and analyses. To that end, PennDOT is sponsoring research to 
develop a statewide set of predictive models for archaeological resources to help project planners 
more accurately estimate the need for archaeological studies. 
 
The objective of Task 1 is to review literature from Pennsylvania and the Eastern Woodlands 
pertinent to the practice of archaeological predictive modeling (APM). Based on this review, 
examples of successful and less than successful modeling methods are evaluated, and the 
findings synthesized. Within the context of the statewide predictive model project, this task will 
utilize past studies to help determine best practices and avoid pitfalls. 
 
The foundational references for this task were drawn from the Pennsylvania Historical and 
Museum Commission’s (PHMC) Environmental Review (ER) archives, URS’s extensive library 
of CRM reports and research documentation, and other repositories of similar research. From the 
ER files of the PHMC, a total of 47 archaeological reports was identified using key words such 
as “predictive,” “model,” and “modeling,” as well as reports with “Predictive Model” as the 
report type. These reports were scanned and reviewed for content. From these, 32 reports that 
contained formalized predictive models were evaluated for this synthesis. Nine of these reports 
exhibited creative methodologies or were otherwise seen as making significant contributions to 
the study of APM. These nine reports were evaluated and assessed in great detail to explore their 
methods and findings. 
 
The synthesis of these reports led to the creation of a modeling methods typology. This report 
explores the characteristics and assumptions of each model type, the efficiency and performance 
of each model type, and the range and efficacy of environmental variables. Guidelines for when 
each type of model is most effective are also presented. Ultimately, these reports show that each 
physical environment and data set call for a modeling approach that is tailored to that situation 
and that the results of each model are comparable only given the situation and the goals of the 
model itself. 
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1. INTRODUCTION 

 
This report details a literature review focused on the published sources that have defined the 
methods of Archaeological Predictive Modeling (APM) and the test-cases where applied to the 
Eastern Woodlands, with a focus on Pennsylvania. This research not only considers the 
application of models within the Eastern Woodland, but also the key methodological 
developments from around the world that influence the practical applications. Through the 
inclusion of methodology as well as application a broader understanding of the advantages and 
drawbacks of each type of modeling is gained. Contained in this review is a brief history of 
methodological development, a synopsis and assessment of models applied to the region, an 
evaluation of the utility of each model and the environmental variables used, a synthesis of the 
evaluation results, and finally recommendations on how these types of models may successfully 
be implemented. The sources drawn from in this research include URS’s library of 
computational archaeology literature, online research databases, academic journals, and the 
holdings of the Pennsylvania Historical and Museums Commission (PHMC). 
 
This task is the first step in the creation of a Pennsylvania state-wide set of predictive models. 
The contribution of this task to the overall project is to allow history to inform the process. 
Modeling is by its nature an exercise in trial and error, and by studying the history of modeling 
in the region, hopefully we may learn from the successes and avoid the pitfalls. The 
understanding gained from these evaluations will influence the types of models that are created 
for different regions, the variables that are utilized in our attempt to identify a pattern in 
prehistoric site locations, and the standards of performance by which we can measure our 
achievements. Ultimately, the reports included in this summary provide a context for the 
understanding of how the real-world application of these abstracted models can accomplish the 
reciprocal goals of protecting cultural resources and aiding in the effective and efficient 
completion of transportation projects.  
 
SCOPE OF THIS PROJECT 
 
The scope of this task is to evaluate APM from Pennsylvania and the Eastern Woodlands region. 
The purpose of this evaluation is to gain a better understanding of the methods that have been 
used and which approaches have proven the most successful. In order to achieve this, this project 
drew from the Environmental Report (ER) archives of the PHMC and URS’s in-house library of 
Cultural Resource Management (CRM) studies and research literature.  
 
The report that follows is organized into chapters: Chapter 1 contains project specific 
information and background information on APM. Chapter 2 contains a description of the 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 1: LITERATURE REVIEW 

 

1 • INTRODUCTION 
2 

methods by which models were selected and a more lengthy description of the technical and 
methodological approaches utilized within the APM studies reviewed herein. Chapter 3 begins 
with a description of the APM study data set and a technical description of how each model is 
evaluated, followed by the individual evaluations. Each individual project evaluation contains 
information on the project’s region of application, the significance of the model to this study, the 
model type, the variables used in the model, an evaluation of the model’s performance, and a 
final assessment that determines if the model was successful in achieving its goals and what 
contributions it made to the overall project. Chapter 4 consists of the results and findings of the 
evaluation. This chapter is a synthesis of the reporting style, variables used, and methods 
observed within the APM reports. Chapter 5 offers concluding observations and general 
recommendations regarding how and when each type of model and certain variables could be 
applied with success. Finally, Chapter 6 is the references cited section.  
 
BRIEF HISTORY OF APM 
 
In order to evaluate the success of various modeling approaches, it is important to understand the 
origins of APM, the methods employed throughout time, and the benefits and drawbacks 
associated with them. The historical development of this field sheds light on which techniques 
have withstood the test of time and what APM is able to tell us about the reality of 
archaeological site locations and the systems that created them. 
 
While many authors cite Willey’s (1953) settlement pattern analysis in Peru as the tap root of 
today’s APM, it was not until the 1960s that the use of the term “predictive” made headlines in 
the archaeological debate of new methods and systems thinking (Bayard 1969). With the 
methodological and computer-aided focus growing in the New Archaeology paradigm, the use of 
the term “predictive model” became more commonplace in archaeological literature in the 1970s 
(e.g., Judge 1973; Engelbrecht 1974; Smith 1974; Jochim 1976). Throughout the 1980s, the 
methods of numerous modeling techniques were developed and applied to archaeology. The 
seminal papers, including Kvamme (1983, 1984, 1988), Kohler and Parker (1986), and Judge 
and Sebastian (1988), each contributed to the elevation of a generalized modeling methodology 
that used measurements of the environment taken at the location of known archaeological sites to 
develop a pattern that was projected into unsurveyed regions to find landforms of similar 
measures. 
 
The popularity of this method stemmed from its intuitiveness to archaeologists, accessible 
statistical methods, reliance on a body of identified sites, and suitability to be projected across 
large tracts of land. With this emphasis on projecting from the level of sites to the region and 
reliance on statistical models (mostly linear or logistic regression), this approach was referred to 
as an “inductive” approach. Developing concurrently with the adoption of these methods, 
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alternate approaches were created in an attempt to address drawbacks of the inductive approach, 
namely being theory-neutral, often using biased samples, lacking in explanatory power, and seen 
as environmentally deterministic (Borillo 1974; Salmon 1976; Bettinger 1980). Alternate models 
often relied more on the use of theory and hypothesis to construct models of where sites should 
be located based on knowledge, as opposed to where sites could be located based on existing 
samples; this was called a “deductive” approach. The tension between these two approaches, 
inductive vs. deductive, has defined the archaeological literature of APM for almost 30 years.  
 
Throughout the 1990s and 2000s these two approaches were debated heavily, but APM in 
general fell from the mainstream archaeological literature, with the exception of grand 
simulation models championed by Kohler (Kohler and Gumerman 2000). Throughout that time, 
computer technology made statistics-based models more accessible and easy to create, but no 
more accurate. Many deductive approaches were offered with mixed success though none gained 
widespread use. It is only in the most recent generation of APM literature that researchers have 
gone beyond the dichotomy of inductive vs. deductive, realizing that it is a false argument 
(Whitley 2005), and have begun to accept that every model is some combination of both 
approaches and that each orientation has valuable applications in specific realms such as 
management and research (Verhagen and Whitley 2012). Understanding the theoretical 
orientation of a specific model is vital in using it correctly. Without knowledge of the model’s 
focus, blind spots, and intention, its use as a management device is flawed.  
 
The models reviewed in this study mirror the broader developmental trends of the field within 
the United States and abroad. The studies selected for evaluation here contain examples of 
methodological and theoretical approaches that were clearly informed by the national debate. 
Even within some studies, the tension between utilizing archaeological experience and theory 
versus statistical inference and computer technology is very evident. This false dichotomy of 
experience versus technology—along with those of inductive versus deductive, hypothesis 
versus empirical observation, research versus management, academic versus CRM, etc.—builds 
the scaffolding that frames the use of APM methods, but does little to help advance the field.  
 
While any given model may be more slanted toward a specific theoretical orientation, they are all 
a combination of many approaches and cannot be assigned to specific camps. To do so serves 
only to ignore useful methods and theory that may be the best fit for the data; it is the data that 
should inform the selection of the model and not the other way around. The report evaluations 
within this study are undertaken within the historical context of the development of the APM 
field. No specific theoretical approach or camp is adhered to or viewed as the best approach. It is 
hoped that this research can contribute to the growth of APM models that are less restricted by 
theoretical restraints and more open to achieving successful results. 
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2. CHARACTERISTICS OF APM MODELS IN PENNSYLVANIA 

 
Numerous archaeological predictive models from throughout the Commonwealth of 
Pennsylvania have been evaluated to better understand the history, methodology, and success of 
various techniques. The APM models evaluated here cover the full range of time that 
archaeologists have been practicing APM building within the context of cultural resources 
management, from the early 1980s to the present. Further, the methods used to construct the 
models evaluated here showcase a rather wide range of techniques and applications. The 
following section will describe the methods, model variables, and outcomes of each of 32 models 
evaluated within the Commonwealth. 
 
MODEL SELECTION 
 
The selection of models for this evaluation was based primarily on a keyword search of the 
Pennsylvania SHPO’s Environmental Review (ER) files database. A total of 47 reports were 
obtained from this archive and serve as the overall database for this evaluation. Each of these 
reports was scanned in its entirety and evaluated to gain an understanding of the settlement 
analysis or model that was undertaken. These reports were identified by searching the ER report 
database for archaeological projects listed as “Predictive Model” as a report type, and reports 
that contained the term “Predictive” in the title. The reports generated through this search 
method are judged to constitute a relatively complete and representative sample of what is 
available in this archive.  
 
From these reports, a number of studies were culled because they were contextual or synthetic 
documents, as opposed to predictive models (Table 1). From the APM reports, 32 were chosen 
because they contained predictive models and a means to evaluate their results. The models 
chosen for inclusion in this study are those that have served as reference points for other APM 
studies, those that advanced the methodological and interpretive development of APM studies in 
the region, and those that presented cogent technical details. This includes models that are large 
and small in aerial scope, those that succeeded and some that failed, both GIS and non-GIS based 
models, and those that were innovative as well as models that used tried-and-true methods. 
Further, the models selected for evaluation are those that resulted in assessment of sensitivity or 
probability of archaeological resources for specific and often continuous areas. This is to 
differentiate models that resulted in broad and nonspecific assessments of sensitivity for 
idealized landforms or regions. The selection of models that resulted in continuous surfaces, GIS 
or otherwise, was done to draw a division between more specific APMs and less specific 
settlement pattern analyses or landscape sensitivity studies. The former, if well documented, 
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allow for the verification of results and methods, while the latter are frequently hypothetical in 
nature and not as comparable other APMs and the models created through this project.  
 

Table 1 - Reports Excluded from Study 

Author(s) Date Report Title Reason for Exclusion 

Corrie 1984 

Predictive Archaeological Model Study, Third 
Street to Ferry Street Redevelopment Parcel, 
Easton, Northampton County, Pennsylvania. 
E.R. 1984-1641-095-B  

Study of historical 
archaeological site 
locations. 

Davis  1989 

Archaeological Land Use History of the 
Pittsburgh Technology Center Site, 
Pittsburgh, Pennsylvania. E.R.1989-1053-
003-A  

This report is a land use 
history for the survey for 
historical industrial sites.  

Vento 1994 
Volume IA, Genetic Stratigraphy: The Model 
for Site Burial and Alluvial Sequences in 
Pennsylvania. E.R. 1994-R001-042-A  

A detailed 
geomorphological study. 

Heberling and 
Associates 1995 

Phase 1 Archeological Investigation, West 
Fairview Borough park, Cumberland County, 
Pennsylvania. E.R 1985-1323-041-B  

Phase I survey, no 
discernible archaeological 
predictive model. 

GAI Consultants 1998 

Abbreviated Technical Report Phase I 
Cultural Resources Survey Proposed 
Knowledge Parkway Project Harborcreek 
Township, Erie County, Pennsylvania. E.R. 
1992-0329-018  

Phase I survey, no 
discernible archaeological 
predictive model. 

VandenBosch, 
Siemon, and 
Johnson 

2000 

Phase 1 Archaeological Survey of the 
Proposed East Side Access Highway, 
wintergreen George Bridge Project Area. 
SR4034-A91, Harborcreek Township, Erie 
County, Pennsylvania. E.R. 1992-0858-049-F  

Phase I survey, no 
discernible archaeological 
predictive model. 

Chiarulli, 
Kellogg, 
Kingsley, 
Meyer, Miller, 
Perazio, and 
Siegel 

2001 

Prehistoric Settlement Patterns in Upland 
Settings: An Analysis of Site Data in a 
Sample of Exempted Watersheds. E.R 2001-
R001-042-A  

A detailed prehistoric data 
synthesis and settlement 
pattern analysis for upland 
settings, but no discernible 
archaeological predictive 
model. 

Weed 2002 

Prehistoric Context Study (Chaper Three) in 
Support of Data Recovery at Site 36AL480, 
Leetsdale, Allegheny County, Pennsylvania. 
E.R. 1999-2661-003-T.  

A prehistoric context and 
settlement pattern analysis, 
but no discernible 
archaeological predictive 
model. 

Lawrence, 
Weinberg, and 
Hayes 

2003 

Alternative Mitigation to the Interstate 
Fairgrounds Site (36BR210). S.R. 1056, 
Section 001, Athens Bridge Replacement 
Project, Athens Township, Bradford County, 
Pennsylvania. E.R. 2000-8029-015-R.  

Synthesis and unpublished 
reports, but no discernible 
archaeological predictive 
model. 
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Author(s) Date Report Title Reason for Exclusion 

MacDonald, 
Lothrop, and 
Cremeens 

2003 

Pennsylvania Archaeological Data Synthesis: 
The Raccoon Creek Watershed (Watersheds 
D, Subbasin 20) Bridge Replacement Project 
T-319, Beaver County Bridge No. 36 (Link 
Bridge), Independence Township, Beaver 
County, Pennsylvania. E.R. 1996-8232-007-
G.  

A very detailed prehistoric 
data synthesis at the 
watershed scale, but no 
discernible archaeological 
predictive model. 

MacDonald, 
Mahoney, and 
Dugas  

2003 

Pennsylvania Archaeological Data Synthesis: 
The Upper Juniata River Sub-Basin 11 
(Watersheds A-D) Walter Industrial Park: 
Mitigation of Adverse Effects, Grennfield 
Township, Blair County, Pennsylvania. E.R. 
2000-2888-013-P.  

A very detailed prehistoric 
data synthesis at the sub-
basin scale, but no 
discernible archaeological 
predictive model. 

Diamanti 2006 

Addendum to Phase l a Sampling Design for 
Urban Archaeological Resources Mon/Fayette 
Transportation Project S.R. 51 TO I-376 
Section Allegheny County, Pennsylvania. 
E.R. 1987-1002-042-B86  

Sampling strategy for 
historic urban sites. 

MacDonald 2006 

Pennsylvania Archaeological Data Synthesis 
Subbasin 9: The Central West Branch 
Susquehanna River Watersheds A (Pine 
Creek), B (Kettle Creek) & C (Bald Eagle 
Creek) With a focus on Great Island, Clinton 
County, Pennsylvania. E.R. 2004-1413-035-H  

A very detailed prehistoric 
data synthesis at the sub-
basin scale, but no 
discernible archaeological 
predictive model. 

Wall, Sara, 
Schmidt, and 
Ross 

2008 

Phase 1 Survey for the Armenia Mountain 
Wind Energy Project, Tioga and Bradford 
Counties, Pennsylvania. E.R. 2007-1478-042-
D  

Chapter 4 references 
previous models for the 
study area and considers 
the environmental 
variables that were seen as 
important in these studies, 
but does not develop an 
actual model as defined in 
this study. 

Coppock 2009 

Phase I Archaeological Survey, US 219 
Improvement Project, Meyersdale to I-68, 
Somerset County, Pennsylvania and Garrett 
County, Maryland. E.R. 2002-8042-111-Q.  

Phase I survey, no 
discernible archaeological 
predictive model. 

 
Undoubtedly, additional reports are within the ER files that contain sensitivity or APM models, 
but in most cases these models will be fashioned for a specific project area and are often smaller 
in scale and do not attempt to advance modeling techniques. While this may be the most 
common type of model that is created for the scoping of field studies in CRM projects in 
Pennsylvania, the exclusion of many of them from this evaluation is not a deficit. Models of this 
type—ad hoc, non-statistical, very rarely field tested—do not offer much to this study in the way 
of new techniques or innovative approaches.  
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TYPES OF MODELS 
 
The brief background section presented in Chapter 1 describes a number of the dichotomies and 
approaches used in the construction of APMs around the world. The broad methodological trends 
and theoretical issues discussed in the background section set the context for the specific 
implementations discussed here. Through the formalization of different theoretical approaches 
and actualization of various classes of methods, the models discussed here can be grouped into 
more specific model types. The more specific model types group the APMs into classes that 
share many common characteristics, both technical and theoretical, but also are open enough to 
allow for a good deal of diversity with each type. This typology serves as a convenient way to 
characterize models of similar structure to facilitate in-kind evaluation. Conversely, the types are 
not arranged as a hierarchy, and APMs may borrow from multiple types and have characteristics 
that blur type boundaries. As this evaluation will show, each of the model types recognized in 
this study are capable of identifying the location of archaeologically sensitive areas, and no one 
model type is the best for every situation. Figure 1 presents a schematic of model types and 
associated characteristics. Figure 1 divides the models evaluated for this study into two broad 
classes, those that use weighted variables and those that do not, and identifies eight model types 
defined by the methods each uses to establish the sensitivity of specific locations.  
 
Depicted below the eight model types are five characteristics that apply to each model type. 
These characteristics are arranged on scales that span the various model types, but are not 
directly tied to any one type. For example, a qualitative model is generally built from poorer data 
quality and non-statistical methods as compared to a correlative model. On the other hand, this 
figure is not intended to imply the reverse: a direct relationship from each characteristic to a 
model type. Non-statistical models with poor data quality need not always be of the qualitative 
type. Any model can use poor data, but in this study models on the left end of the spectrum tend 
to have poorer data quality. These model types and their general characteristics represent the 
variety of models evaluated for this study within Pennsylvania. However, research into APMs 
from around the world shows that this typology is a reasonably accurate road map to 
understanding the variety of techniques applied across the discipline. 
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Figure 1 - Schematic of model types and characteristics within Pennsylvania APM. 

 
Qualitative Models 

The qualitative model is the most simplistic type of model encountered in this study. This model 
may be based on a deductive or empirical understanding of environmental and cultural factors 
that affect site location decisions. The distinguishing feature of this type is that the application of 
the site location preference model to the real world landscape does not involve taking 
measurements of the landscape, in the field or remotely. That is to say that the implementation of 
the model is achieved through “guesstimates” of the value or location of a variable on the 
ground. For example, if the modeler hypothesizes that areas of lesser slope are more sensitive 
than higher slope angles, these areas will be judgmentally delineated as opposed to measured 
using a digital elevation model (DEM) or topographic map. Likewise, areas of high resource 
productivity may be located by delineating areas where a map appears to have a range of habitats 
in close vicinity, as opposed to calculating a diversity index or other quantification of resource 
availability. This method was used predominately in the earlier APM studies when GIS data 
were not readily available and field measurements of the study area were impractical. Within 
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these earlier studies the method was implemented in two ways: 1) hand-drawn based on a 
qualitative assessment, and 2) generalization of environmental variables across large survey 
blocks (square kilometer or more) into a range of sensitivity.  
 
Characteristically, this type of model is often couched as deductive in its approach due to the 
assessments of sensitivity being based on the model creators’ theories of settlement location. In 
fact, this approach is more aptly characterized as pseudo-deductive since the modelers’ theories 
of settlement sensitivity are based on their knowledge of site locations. Because the correlation 
of known site locations to environmental variables are not measured by this type of model, the 
method does not require the knowledge of sites within or near the project area. As practiced, 
these maps are often non-GIS and difficult to validate because of the qualitative assessments and 
lack of measured variables.  
 
Albeit simplistic, this model type is useful over large areas or in regions where data is very 
sparse. Today, however, data are seldom sparse and measuring environmental variables is a 
much easier task than in the past. For models covering large areas, it is impractical to hand draw 
every sensitive landform and equally impractical to employ survey areas on the scale of square 
kilometers. Further, the process used to create these models is often arbitrary and difficult to 
document or recreate. Therefore, this type of model is not useful or appropriate for large area 
models intended to assess archaeological sensitivity for planning purposes. 
 
Associative and Composite Models 

The associative model type is the most common type of model within the sample studied for this 
report. The composite model type, on the other hand, is the least common type within this study. 
These two model types are quite different in their implementation, but they are classified 
together because they share many of the same characteristics. 
 
The associative model type covers a wide range of implementations, but is centered on the 
methods of quantifying environmental measures and associating sensitivity with the presence, 
absence, or proximity to those variables. This method differs from the qualitative models, in that 
real world variables are measured, and differs from judgmental models, in that the classes of 
variable measures are not weighted, arbitrarily or mathematically. Associative models most often 
derive site location theories based on broad regional studies that synthesize variables that appear 
to affect settlement. These models often describe the choice of environmental variables as 
deductive. As with qualitative models, this is often a pseudo-deductive approach because the 
choice of variables is structured upon the location of sites discovered through regional survey. 
Because of this, these models often do not utilize site locations within their study area to derive 
environmental correlations. Essentially, this model type recognizes regionally applicable 
associations between site locations and the presence/absence or distance from environmental 
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features, and then applies those associations to the study area being modeled. This application is 
done through the measuring of the same variables within the study area and assessing sensitivity 
based on the presence/absence or magnitude of these measures. As noted above, this process 
does not involve the weighting of variable measures for their relative contribution to the overall 
sensitivity. 
 
Models of associative type are among the most common because they are the easiest to apply 
with limited data, are intuitively compatible with archaeological settlement theories, and are 
rigorous enough to be quantified and repeatable. The associative models are present throughout 
the time span of models reviewed here, but have an origin in the earlier portion of predictive 
modeling. This is because that time period, the early to late-1980s, coincided with the advent of 
GIS, the increasing accessibility of digital data, and the availability of numerous broad regional 
settlement studies and surveys. With the power of GIS to measure digital environmental data and 
the numerous volumes of settlement pattern analysis, this type of model quickly filled the void 
between subjective qualitative sensitivity assessments and rigorous statistical regression models.  
 
Composite models on the other hand are only represented by a single example within this 
evaluation, but share many of the same characteristics as described above. The composite model 
type is defined as an assessment of sensitivity derived from the composite location of many sub-
models that seek to locate areas desirable to Native American settlement. These areas may be 
locations of specific resources or locations of cultural significance. This model type is the closest 
method in this study to achieving a purely deductive approach. With this type, any number of 
models is used to locate areas that may hold desirable resources diachronically or on a seasonal 
basis. These models may include the location of deer habitat, fish migrations, prime agricultural 
land, and specific plant communities. The specific models used are derived deductively from 
archaeological theories about settlement in that region. Once generated, each of these models is 
overlain and the total sensitivity is a composite of all of the models. Typically, the highest 
sensitivity areas are those that have the highest ranking for all of the combined sub-models. This 
could be done on any time scale from seasonal, to yearly, to all of prehistory without relying on 
temporal data from archaeological sites.  
 
Because this method derives the environmental or cultural variables and the quantification of 
sensitivity from an essentially deductive approach, known sites with the study area are not 
required. Unlike the associative model, the mathematical rigor and computational intensity can 
be as simple or complex as the underlying models of resources are made to be. However, this 
exposes a weakness of this model type: the inaccuracies and variance of the underlying models 
are compounded into the final assessment of prehistoric sensitivity. It is easy to recognize that 
modeling the presence/absence and change in plant or animal communities formed thousands of 
years ago may be as difficult as modeling the settlement locations that are the ultimate objective 
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of the process. The uncertainties introduced into the numerous underlying models are multiplied 
in the composite. The outcome of this type model is only as good as the product of the models it 
is composed from. Validation of this type of model can be accomplished using known prehistoric 
site locations within the study area without the fear of bias through model circularity.  
 
The associative and composite model types are conceptually quite different. The associative type 
is very common, is often ad hoc, and it models environmental relationships at a very basic level. 
On the other hand, the composite model is rarely attempted, requires a high degree of planning, 
and models a wide range of environmental relationships in a variety of ways. The similarities 
include the fact that neither model requires the knowledge of archaeological site locations within 
the study area, is more or less deductive in approach, and does not rely on the relative weighting 
of variables to calculate sensitivity.  
 
Judgmental Models 

Proportionally, judgmental models likely represent a much larger percentage of APMs created 
for CRM than is reflected in this evaluation sample. This is because this model type, like the 
associative type, is a very flexible set of methods that are easy to implement, conceptually easy 
to understand, and easy to repeat or apply to different areas. Models of this type are very 
commonly used to create quick and broadly applicable sensitivity assessments to aid in scoping 
field work effort and budgets for larger projects. Because of this, most of the applications of 
these models are tucked within Phase IA reports or the front matter of survey reports and not 
drafted specifically as predictive modeling reports. The smaller proportion of judgmental models 
in this evaluation may not represent how often these models are used relative to the other types, 
but it does cover the various uses of this method well. 
 
Judgmental models are relatively simple models that use weights to boost the relative 
contribution of certain variables or classes of a variable to account for a greater portion of the 
overall assessment of sensitivity. Typically, each variable is overlain within a GIS in a regular 
grid pattern and the weights assigned to them are summed to create the overall sensitivity, where 
the highest sum is interpreted as the most sensitive area. This model type can combine the use of 
presence/absence or distance to or from variables to contribute to the sensitivity. Variations 
include using negative weights to reduce the overall sensitivity (such as in areas of disturbance) 
or weighting factors that multiply variable weights that are seen as more important than the other 
variables. This method is very flexible and can be applied in many different ways.  
 
This model type is called judgmental because the weights assigned to each variable are chosen 
based on expert judgment and observation. This is opposed to correlative models, which assign 
weights based on measuring the variables at each known site, and often non-site, location. 
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Known sites may be used from the modeling study area, but in many cases weights are derived 
from regional site syntheses and hypotheses.  
 
Within the sample of reports evaluated here, there are two main types of weighting systems used. 
The first, referred to as basic weighting, is a method by which the presence/absence or distance 
classes from a variable (e.g., presence/absence of a drainage divide or distance from a river) are 
weighted with their relative contribution to the overall sensitivity. Presence/absence variables are 
given a single weight, generally only for presence, and distance variables are given a range of 
weights based on the desired breakdown of classes. For example the distance to a river may be 
broken down into classes of every 100 feet. Depending on the examples from regional studies or 
the judgment of the modeler, each class is given a weight corresponding to its contribution to 
sensitivity within that variable. Since weights are assigned relatively within a variable, each 
variable is assumed to contribute equally to the overall sensitivity of the landscape. Conversely, 
factor weighting, assumes that each variable may contribute differently to the overall landscape 
sensitivity and assigns them a weighting factor accordingly. Within this method, the classes 
within a variable are weighted the same as before, but are then multiplied by the contribution 
factor. For example, each 100-foot distance class from a river is assigned a relative weight, but 
then it is multiplied by the weight assigned to the proximity to a river relative to the other 
variables. In this example, if proximity to a river is assigned a factor of 2 and proximity to a 
drainage divide is a factor of 1, the river variable is considered to contribute to the overall 
sensitivity twice as much as the drainage divide. 
 
This method is very versatile and allows a lot of room for experimentation and blending of 
weighting schemes. The popularity of this approach is based on this versatility, simple 
mathematics, and the idea that some variables are greater attractors for settlement that others. 
However, this approach does have some drawbacks, chief among which is the effect of the 
central tendency of summing weight. As an example, a model may be set up to contain four 
environmental variables, each with three classes. Each of the three classes is assigned a weight of 
3, 2, or 1 for high, moderate, and low sensitivity. In this example there are no factor weights. 
With three possible values for four different variables, there are a total of 81 different 
combinations of weights possible. When the weights of each of the four variables layers is 
summed in the GIS, to derive the overall sensitivity layer, each of these 81 possible 
combinations of weights is summed into one of nine different overall sums. If four cells of a 
weight of 1, for low sensitivity, are summed, the total sum is four—the lowest possible. If four 
cells of weight 3, for high sensitivity, are summed, the overall sum is 12—the highest possible. 
The other 79 possible combinations between these two are summed to a value of 5, 6, 7, 8, 9, 10, 
or 11 (Figure 2). The large number of possible combinations is being summed into a smaller 
number of possible outcomes. The distribution of the 81 combinations into 9 outcomes 
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approximates a normal distribution. Therefore, as you sum the sensitivity weights, the resulting 
values will tend toward the mean of the overall sensitivity.  
 

 
Figure 2 - Example of central tendency of summing weights. 

 
As shown by Table 2, there is only one combination of weights that will give you a total 
sensitivity value of 1 or 12. Conversely, there are 19 combinations of weights that will give you 
a value of 8, the mean of the distribution. In a set of randomly distributed weights, you have a 
1% chance of a total value of 1 and a 24% chance of a summed value of 8. Based on the 
assumption that the archaeological sensitivity of the study area is not random, the example model 
will likely be biased toward higher or lower sensitivity. However, once summed, the weights are 
rescaled into a more normal distribution, moving the weights toward the mean. This has the 
effect of clumping most of the weighted combinations toward the mean, which is moderate 
sensitivity. The end result is overestimating the middle, while underestimating the highs and 
lows. This can be countered somewhat be re-establishing high, moderate, and low sensitivity cut-
off points from the final summed distribution, but for each value that the cut-off moves toward 
the center, it takes in an increasingly large portion of the model space, thereby diluting the 
model’s performance.  
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Table 2 - Tabular Example of Central Tendency of Summed Weight 

Summed 
Value Probability 

Weight 
Combinations 

4 1% 1 
5 5% 4 
6 12% 10 
7 20% 16 
8 24% 19 
9 20% 16 

10 12% 10 
11 5% 4 
12 1% 1 

Total   81 
 
Correlative with and without Testing Models 

Correlative models choose variables and assign weights through correlating site locations with 
each variable. Typically, the correlation is observed between the number of site locations within 
a given distance from a variable. These models differ from judgmental type models in that 
weights are calculated empirically and the relationship between sites and the variables is better 
understood. The two varieties of correlative models discussed here are distinguished by those 
with testing of the correlations against background values and those without testing. The 
correlation of a site location to a variable signals a potential relationship between the two. 
However, testing this correlation against environmental background values can detect those 
correlations that are by chance and those that are capable of discriminating site locations from 
the background values. This type of model, particularly with background testing, is the first step 
into the realm of statistical APM.  
 
Both forms of the correlative model type are the same in many respects. Each model begins with 
the choice of environmental variables that the researcher has available or feels to be useful in 
predicting sensitive locations. A measure of each variable is taken at each known site location, 
preferably within the study area, and classified into a range. This is typically visualized as a 
histogram (Figure 3). From this, the sensitivity of each class of the variable (e.g., 0-5% slope) is 
assessed based on the number or percentage of sites that are found within it. Based on the 
frequency of site locations within each class, they can be weighted for their contribution to 
overall sensitivity in a variety of ways. One method is to weight each class judgmentally, as with 
the previous model type, and assign arbitrary weights relative to the portion of sites within each 
class. Factor weights may also be used. Alternatively, weights can be assigned in a way that 
utilizes the information generated through the correlation step. Weights for each class may be 
assigned as the proportion of sites that are found within each class. Additionally, the factor 
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weights may be set based on the strength of the correlation. This last weighting method is a more 
objective reflection of the data. 
 

 
Figure 3 - Example of single variable histogram and linear fit. 

 
Where the two forms of the correlative model type differ is in the understanding of variable to 
site location correlations versus environmental background values. For example, site locations 
may show a high correlation for being within 0-5% slope, but this may only be a reflection of the 
topography of the project area and the fact that much of the land is relatively level. The objective 
of most of these APM methods—that is, to find variables that help to distinguish the pattern of 
site locations within a given environment—is best served by using variables that discriminate 
between site locations and background values. There are a number of ways to test between 
measures at site locations and background values, but the most common way is to either visually 
inspect histograms of each or use statistical testing. Further, in either of these approaches, the 
background may be represented by “non-site” locations, random points, large random samples, 
or the full set of background values, each having their own pros and cons. Using the visual 
method of testing, a histogram of site location measures is overlain on a histogram of 
background values classified in the same manner (Figure 4). If the two histograms appear to 
differentiate site locations from the background, the variable may be assumed to be useful in 
model building. However, this method is prone to error. The less biased approach is to use the 
distribution of measures for both sites and background values within a statistical test. Commonly 
used tests for this step include the Kolmogorov-Smirnov test (K-S test) for equality of 
probability distributions and the Two Sample T-Test for difference of the mean. In most cases, a 
nonparametric test such as the K-S test or Mann-Whitney test is preferable because the data 
rarely conform to the normal distribution, an assumption of the T-test. Using the K-S test or 
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similar test, if the range of a variable where archaeological sites are found is significantly 
different to the background values it can be said that the variable discriminates site location and 
therefore may be very useful in model building. An example of this is demonstrated in Figure 
(Figure 5), which compares the Empirical Cumulative Distribution Functions (ECDF) of the 
percent slope for site locations and 2,000 random points within Blair County. The outcome of the 
K-S test indicates that the distribution for slope recorded at site locations differs significantly 
from slope throughout the study area (D=0.4858, p < 0.05). Once each variable is accepted or 
rejected based on its ability to discriminate site locations, the classes of each variable can be 
weighted in the same manner as described in the paragraph above. 
 

 
Figure 4 - Example of histograms comparing distributions of slope for site locations and 

background values. 
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Figure 5 - Example of K-S test results comparing slope for site location and background values. 

 
Following the steps of identifying correlations and weighting variables, this model type proceeds 
in a similar manner to the judgmental model type in that the overall sensitivity is most often 
generated by summing the sensitivity of each variable. A potential downside to this is the 
trending of values toward the mean, as discussed above, and the existence of multicollinearity 
within the data. However, the correlative model type goes much further that the previously 
discussed types in identifying or statistically assessing the strength and nature of the correlations 
between site locations and variables. This extra step removes many of the arbitrary decisions of 
other model types and creates a more transparent, justifiable, and repeatable model with more 
explicit assumptions.  
 
Linear and Logistic Regression Models 

By a simplified definition, regression models are used in APM to characterize the relationships 
between site presence/absence and variables and to model those relationships in order to forecast 
the probability of site presence/absence across a study area. While an in-depth treatment of the 
statistical field of regression is beyond the scope of this report, the basics of the approaches often 
utilized in APM will be covered.  
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In the most basic form (𝑦 =  𝛼 +  𝛽𝑥) , the use of linear regression attempts to calculate the 
value of site sensitivity, known as the dependent variable or y, based on an independent 
explanatory variable referred to as x. The slope of the regression line (β) is calculated from the 
two variables as the best-fit by minimizing the sum of the squared residuals, the deviations from 
the line. Finally, 𝛼 is the y-intercept, the point at which the regression line intersects the y axis. 
In order to estimate the archaeological sensitivity of a location (y) based on the measure of a 
variable (x), the slope, y-intercept, and value for x would be substituted into the equation and 
solved for y. Figure 6 is a graphical example of a simple ordinary least squares (OLS) linear 
regression. The inclusion of more than one independent variable requires the calculation of a 
multiple linear regression: 
 

(𝑦 =  𝛼 +  𝛽1𝑥1𝑖 +   𝛽2𝑥2𝑖 + ⋯+  𝛽𝑝𝑥𝑝𝑖). 
 

This method builds from the simple linear regression by modeling the relationship between 
explanatory variables and the response. 
 

 
Figure 6 - Example of OLS simple linear regression and equation components. 

 
The most prevalent issue with attempting to model archaeological site locations with this 
technique is that the location of archaeological sites is most often calculated as presence or 
absence, or numerically as 0 or 1. Because of this, it is difficult to fit a linear model to 
dichotomous data. Logistic regression is a special case of the generalized linear model family 
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that utilizes a sigmoidal shaped logistic function, and its inverse the logit, to make continuous 
predictions from the dichotomous dependent variable. The logistic equation follows as: 

 
 (𝑦 =  1/(1 + 𝐸𝑥𝑝(𝛼 +  𝛽1𝑥1𝑖 +   𝛽2𝑥2𝑖 + ⋯+  𝛽𝑝𝑥𝑝𝑖)) 

 
Figure 7 shows a simple example of the logistic function underlying the predicted values (red 
dots) between the binary dependent variable of site presence/absence. The resulting continuous 
prediction must then be segmented to represent presence or absence; this can be done in a 
number of ways.  
 

 
Figure 7 - Schematic of logistic function fitting site/non-site location as a binary response variable. 

  
Expressing the results of a linear or logistic regression in map form requires the calculation of 
the equation for each grid cell of each variable. This is most often done in a GIS using raster 
images that contain a data value in each of the regularly spaced cells that cover the study area. 
Each of these data values are treated as a predictor value for each of the explanatory variables 
(x1, x2, x3 … xi). These values are substituted into the regression equation and multiplied by the 
slope coefficient of each explanatory variable (𝛽 1, 𝛽 2, 𝛽 3 … 𝛽 i) and summed across the 
explanatory variable as the y-intercept. The result is a predicted value that corresponds to the 
scale of the dependent variable y. In the case of logistic regression, the result of this arithmetic is 
probability of being in one of the dichotomous groups, site present or site absent.  
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Despite a lengthy history of use within APM studies (see Kvamme 1988 for examples), 
regression techniques were only attempted four times within the reports evaluated here. Three of 
the four attempts resulted in regression being used as a way to help evaluate the relationship of 
variables that were then assembled in a correlative model. In only one instance (Hart 1994) was a 
logistic regression used as the primary model to forecast archaeological sensitivity. In this case, 
Hart utilized a stepwise logistic regression, in conjunction with K-S tests, to estimate the 
probability of site presence within each of 8,000 grid cells measuring 100 m square. The 
stepwise method of this model describes a technique that seeks to find the combination of 
explanatory variables that best describe the outcome. This is accomplished by creating a 
preliminary model that utilizes all of the explanatory variables, removes the least significant 
variable, and then repeats the model minus left-out variables until a stable model is reached. 
There are many different criteria for assessing which combination of variables to retain. In the 
case of Hart, it appears that the t-statistic was used to eliminate variables. After using a GIS to 
calculate the regression equation for 8,000 individual cells, Hart segmented the probability 
outcomes into high, moderate, and low potential.  
 
The example described above is a good illustration of how the published method and theory 
within the APM literature differ from practice within CRM. The methods of rigorous statistical 
techniques, principally logistic regression, have been published in numerous examples (Altschul 
1988; Kvamme 1988; Parker 1985; Warren 1990). Yet, models of the judgmental and correlative 
types are rarely published. In the gray literature of CRM, the inverse is true. Clearly the 
statistically advanced methods of regression are seen as more “scientific” based on their ability 
to quantify patterns, deliver responses that can be measured relatively, and are repeatable due to 
the creation of an equation. These are qualities that many researchers would value in studies such 
as APM. However, with such rigor comes the difficulty of implementing such models, the 
tedious calculations, and the application of numerous assumptions and qualifications. The effort 
of navigating the cost and benefit of using statistical models is the likely reason why they are not 
often used in CRM studies.  
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3. EVALUATION OF APM MODELS IN PENNSYLVANIA 

 
A total of 32 APM reports were evaluated in this study. Of these, nine were selected for detailed 
evaluation based on their use of an innovative or original methodology, inclusion of adequate 
data to evaluate their outcomes, and ability to serve as reference points for models that followed. 
Most of the 32 models included in the study did not qualify for detailed evaluation and are 
presented in summary, by model type. The purpose of the detailed evaluations is to determine 
what methods have been attempted in the past and which of those attempts were successful. 
From this understanding, the successes of the past will be incorporated into the models created 
throughout this project. Similarly, the failures of the past will be recognized and examined to 
better understand their shortcomings.  
 
DATA SET 
 
The 32 APM reports included in the study were obtained from the Environmental Review (ER) 
archive of the Pennsylvania Historical and Museums Commission (PHMC). These reports were 
selected as a representative and relatively complete, albeit not exhaustive, sample of cultural 
resources survey projects that incorporated a prehistoric archaeological predictive model within 
the research design. As described in the previous chapter, a number of different methodological 
approaches were used in the creation of these models. Similarly, a variety of internal and 
external model testing strategies led to a range of outcomes regarding the ability of the model to 
achieve the goal of identifying areas of resource sensitivity.  
 
The ER reports studied range in publication date from 1980 to 2010 (Table 3). The creation of 
APM reports in Pennsylvania began in 1980 and reached its numerical peak in the decade 
between 1995 and 2005 (Figure 8). There is undoubtedly a larger number of project-specific 
sensitivity models produced for project scoping and Phase IA studies than documented in Figure 
8. However, many of these models were not included in this evaluation because they most often 
used a judgmental or associative model approach and do not contribute to the overall study of 
modeling methodology. More accurately, this figure shows the rise and fall of experimentation 
with new modeling techniques and application of models over large areas as the ability of 
computers and availability of digital data increased through the end of the twentieth century. 
Interestingly, this temporal distribution can be compared to national trends in APM development. 
Figure 9 shows the field of archaeology’s “interest” in APM throughout time by counting the 
number of articles that mention the terms “Predictive” and “Predictive Model” within the title 
and abstracts of articles printed in the journal American Antiquity, published by the Society for 
American Archaeology (SAA). Also included on this figure is the same data from Figure 8 put in 
the national context. Overall, the literature concerning APMs peaked within the national 
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discussion between 1985 and 1995, with still robust mention in the five years before and after. A 
secondary peak occurred between 2005 and 2010. It appears that the initial use of APMs in 
Pennsylvania began as the national discussion was in full swing and continued in use for the next 
20 years. Generally, the decline in APM methodological development followed the national 
trend, with some exceptions that will be addressed below. 
 

Table 3 - List of APM Studies Reviewed in this Report, in Chronological Order 

Author(s) Date Report Title 

Bailey and Dekin 1980 

A Survey of Archaeology, History and Cultural Resources 
in the Upper Delaware National Scenic and Recreational 
River, Pennsylvania and New York States. E.R. 1981-
0311-42-A 

Johnson, Athens, Fuess, 
Jaramillo, and Ramos 1989 Late Prehistoric Period Monongahela Culture Site and 

Cultural Resource Inventory. E.R. 1989-R015-042 

Neusius and Neusius 1989 A Predictive Model for Prehistoric Settlement in the 
Crooked Creek Drainage. E.R. 1989-R016-042-A 

Stewart and Kratzer 1989 Prehistoric Site Locations on the Unglaciated Appalachian 
Plateau 

Nass, Wright, Frye, and 
Krupp 1992 

Phase I Historic Properties Investigations, Youghiogheny 
River Lake Project, Fayette and Somerset Counties, 
Pennsylvania and Garrett County, Maryland. E.R. 1981-
0150-042-P 

Whitley and Bastianini 1992 

The Design and Testing of a Mathematical Archaeological 
Predictive Model for the APEC, DCQ, and Storage and 
Transport Project Areas, Pennsylvania. E.R. 1992-R001-
042-A 

Diamanti, Miller, Dinsmore, 
and Hay 1993 

Predictive Model for Archaeological Resources, U.S. Route 
202, Section 700, Bucks and Montgomery Counties. E.R. 
1991-1019-042-KK 

Hart 1994 

Development of Predictive Models of Prehistoric 
Archaeological Site Location, for the Lake Erie Plain and 
Glacial Escarpment in the Erie East Side Access Project 
Area Erie County, Pennsylvania. E.R. 1992-0858-049-E 

Perazio 1995 
East Stroudsburg Area School District, Bushkill Road 
School Complex Project, Cultural Resources Sensitivity 
Study. E.R. 1995-0370-103-C 

Duncan, East, and Beckman 1996 

Allegheny and Washington Counties Mon/ Fayette 
Transportation Project Interstate 70 to Route 51. Evaluation 
of Crooked Creek Predictive Model. E.R. 1987-1002-042-
A02 & A03 

Becher, Weed, Warner, and 
Walsh 1997 

Phase I Cultural Resources Investigations of Columbia Gas 
Transmission Corporation’s proposed market expansion 
project: Artemas storage A and B line 29520 loop in Mann, 
Southampton, Monroe Townships, and Bedford Counties, 
Pennsylvania. Volume 8, E.R. 1996-2683-009-B 
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Author(s) Date Report Title 

Polglase 1997 Letter Report. Archeological Predictive Model for the ANR 
Independence Pipeline Project. E.R. 1984-1506-042-G 

Means  1998 
Phase 1 and Phase 2, Archaeological Investigations, U.S. 
219 Meyersdale bypass Project S.R. 6219, Section B08, 
Somerset County, PA. Volume 1, E.R. 1992-0237-111-A19 

Duncan and Schilling 1999a 
Fayette and Washington Counties Mon/Fayette Expressway 
Project Uniontown to Brownsville, Archaeological 
Predictive Model Development. E.R. 1987-1002-042-B03 

Duncan and Schilling 1999b 

Northumberland, Snyder and Union Counties. Central 
Susquehanna Valley Transportation Project. S.R. 0015, 
Section 088. Archaeological Predictive Model. E.R.1997-
0475-042-Q 

Duncan, East, and Schilling  1999 
U.S. Route 15 Improvement Project, Tioga County, 
Pennsylvania. S.R. 6015, Sections G20 and G22, Steuben 
County, New York. E.R. 1997-2018-117-H 

Coppock, and Heberling 2001 
Predictive Model for Archaeological Resources, US 219 
Improvements Project S.R. 6219, Section 020, Somerset 
County Pennsylvania. E.R. 2001-8012-111-C 

Duncan  2002 

Centre and Clearfield Counties, Pennsylvania. S.R. 0322, 
Section 802 Corridor Project. Phase IA, Archaeological 
Investigation and Predictive Model Summary. E.R. 1999-
2755-033-M 

Katz, Branigan, Schopp, and 
Biondo 2002 

S.R. 0228, Section 290 Cranberry, Adams, and Middlesex 
Townships, Butler County, Marshall, Pine, and Richland 
Townships, Allegheny County, Pennsylvania. Volume 1, 
E.R. 1999-6127-019-H 

Lawrence, Herbstritt, 
Branigan, and Schopp 2002 

 Susquehanna Beltway Project S.R. 0220, Section 077 
Woodward, Piatt, and Porter Townships and Jersey Shore, 
Lycoming County, Pennsylvania. Volume 1, E.R. 2002-
8006-081-K 

Miller 2002 

Archaeological Predictive Model Report and 
Recommendations, PA 23 EIS Project, SR 0023, Section 
EIS, Lancaster County, Pennsylvania. E.R. 2003-8015-071-
G 

A.D. Marble & Company 2003 
S.R. 1056, Section 001 Athens Bridge Replacement Project 
Athens Township, Bradford County, Pennsylvania. Volume 
1, E.R.2000-8029-015-R 

Baublitz, Richmond, and 
Shaffer  2003 

Archaeological Predictive Model, S.R. 0830, Section 590, 
DuBois-Jefferson County Airport Access Project, Jefferson 
and Clearfield Counties, Pennsylvania. E.R. 1993-0231-
065-M 

Coppock, Heberling, Krilov, 
and Carthy 2003 

Phase. I Archaeological Survey U.S. 219 Improvement 
Project Meyersdale to I-68 Somerset County, Pennsylvania 
and Garrett County, Maryland. E.R. 2001-8012-111-C 
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Author(s) Date Report Title 

Mooney, Moore, Perazio, 
Rinehart, and Davis 2003 

Phase I Cultural Resource Investigations of the Planned 
Bushkill Road Schools Complex, project area, Lehman 
Township, Pike County, Pennsylvania. E.R. 1995-0370-
103-H 

Baublitz and Shaffer 2004 
Archeological Predictive Model South Central Centre 
County Transportation Study Centre County, Pennsylvania. 
E.R. 2000-8003-027-N 

Miller and Kodlick 2006 
Archaeological Predictive Model Field Results, PA 23 EIS 
Project, SR 0023, Section EIS, Lancaster County, 
Pennsylvania. E.R. 2003-8015-071-G 

Blades, Vento, and Brett 2007 

Pennsylvania Archaeological Data Synthesis: Deer Creek 
Watershed (Watershed A of the Lower Allegheny River 
Sub basin 18) Allegheny River Bridge Replacement, 
Pennsylvania Turnpike. Harmar Township, Allegheny 
County, Pennsylvania. E.R. 2004-0897-003-K 

McIntyre 2009 East Resources Inc. Troy Pipeline Project, Lycoming and 
Bradford Counties, Pennsylvania. E.R. 2009-0922-042-B 

Glenn 2010 
Archaeological Overview and Sensitivity Models Erie 
National Wildlife Refuge Crawford County, Pennsylvania. 
E.R. 2012-1218-042-A 

Reinbold 2010 

Talisman Energy USA Pipelines Ostrander to Longenecker 
Pipeline located in Jackson Township., Tioga County and 
Wells Township, Bradford County, Pennsylvania and 
Yurkanin to Boor Pipeline, Columbia Township, Bradford 
County, Pennsylvania. Phase I A, Archaeological Survey 
and Predictive Model. E.R. 2010-1506-042-B 

Yamin, Harris, McVarish, and 
Ziesing 2010 

Independence National Historical Park Archaeological 
Sensitivity Study (Phase IA Archeological Assessment, 
Independent Living History Center, North Lot 
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Figure 8 - Distribution of published APM reports in this study. 

 
Figure 10 depicts the geographic distribution of report study areas throughout the state. This 
distribution reflects the fact that many of these models focus on transportation projects and areas 
with large tracts of relatively undisturbed land. That the APM study areas favor central and 
southwestern Pennsylvania may affect the state-wide applicability of environmental factors the 
authors felt most useful; however, statistical testing will be used to evaluate variables within 
each study region. Methodologically, it is unlikely that the geographic bias will have any effect 
on evaluating the usefulness of various techniques and approaches. 
 

 
Figure 9 - Distribution of occurrences of APM terms within American Archaeology journal 

compared to reports in this study. 
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Figure 10 - Map of APM study area distribution for reports in this study. 

 
EVALUATION METHODS 
 
The evaluation of APMs within ER reports considers the following: 1) model type; 2) modeling 
steps and methods to achieve the outcome; 3) variables used to build the model and their 
usefulness; 4) internal and external model validation; and finally 5) model performance, that is, 
the ability of the model to correctly classify the location of archaeological sites and achieve its 
goals. This last consideration contains two very important components, the first is the model’s 
ability to correctly classify site locations (classification error), and the second is its ability to 
achieve the modeler’s goals through classification (referred to as the model’s efficacy). The 
completeness of each evaluation, based on the above five points, depends on the detail, accuracy, 
and methodological description provided by the original author. In some cases, simply 
understanding the methods used to create each model requires many assumptions and the reverse 
engineering of data to understand how it was created. Frequently, the original report fails to 
provide the information required to fully evaluate the model methods and the ability of the model 
to predict site locations. The evaluations below will indicate where reports lack in the 
completeness and precision needed to fully assess their methods and findings. All attempts will 
be made to counter the deficient information with assumptions based on documented methods 
and estimations of their predictive power based on the data provided. 
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In the following evaluations, the description of model types will follow the typology established 
within Chapter 2. Many reports use hybrid model types or multiple model types within a single 
study area. The blending of model types and particular implementation strategy will be 
discussed. The model steps will be presented to show how the original author chose to approach 
the model type and achieve the outcome. For each of the model types, there are numerous ways 
to proceed from the base data to the resulting sensitivity assessment, and each approach has its 
merits. For each report, a table is provided that lists the environmental and cultural variables 
used in the model. In many cases, a larger number of variables are explored by the model builder 
with a smaller selection chosen for model construction. The evaluations below will list all 
variables, identify those chosen to represent the model, and give their relative weight if 
applicable. Further, the attempts of the model builder to validate their model, either internally 
using model data or externally using set-aside or field data, will be documented. Finally, the 
overall ability of the model to correctly classify areas for the presence and absence of 
archaeological sites will be discussed. Taken together as a measure of performance, the model’s 
classification error will be balanced by its efficacy in achieving its cultural resources 
management goals. As previously noted, the measures and model data needed to accurately 
assess classification power are seldom reported in the sample evaluated here. However, attempts 
will be made to estimate the appropriate measures and evaluate the outcome relative to the model 
goals. 
 
Performance: Evaluating Model Classification Error and Efficacy 

Along with understanding methodology and variable choice, the most important outcome of this 
evaluation is assessing the performance of previous models. As previously stated, a measure of a 
model’s performance needs to consider two very important aspects: 1) classification error; and 2) 
success in achieving the model’s goals. The first measure of performance, classification error, is 
the calculation of the actual (or “observed”) presence/absence of archaeological sites versus the 
predicted presence/absence generated from the model. Classification error can be presented 
through standardized tables of classification rates or shorthand in the form of the Kvamme Gain 
Statistic (Kg) (Kvamme 1988). While the gain statistic is convenient for comparing model 
results, both it and classification errors are needed to evaluate a model’s performance.  
 
The Kg is the standard measure of model efficiency used within APM literature. It is a relative 
measure of a model’s balance between the correct prediction of site locations versus the size of 
the area within which sites are predicted. This balance may be described as the difference 
between completeness and efficiency. It is critical to note that any given model can have a wide 
range of Kg values depending on how the model is segmented into site-likely/site-unlikely or 
high, moderate, and low sensitivity areas (or any other scheme of dividing up the model’s 
outcome). A more detailed discussion of how the statistic is derived and applied to a given model 
is presented in Appendix A. 
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The equation used to derive the statistic is the percent of the modeled area predicted as likely to 
contain sites divided by the percent of the site sample that is predicted correctly within that area, 
subtracted from 1. A Kg ranging between 0.5 and 0.8 is typical for models that are parsed so as to 
balance the correct prediction of sites against the disadvantages of predicting an unduly large 
area to contain sites. A negative gain for any area thought likely to contain sites is universally 
considered a failure because it actually signifies a negative prediction. Often, if the statistic falls 
below a Kg of 0.5, the classification of site-likely area may be too large and should be 
reconsidered or the model may not be a good reflection of the site pattern. Conversely, a result 
above a Kg of 0.8 may either indicate a very successful model or perhaps a model that is over-fit 
and does not consider other areas beyond those that contain the most typical sites in the 
settlement pattern.   
 
The Kg is well suited to showing the success of changes made within a model or changes made to 
the classification of a single model. For comparing models, the Kg is best applied to models that 
have similar characteristics such as location, methodology, and site sample. To compare models 
of dissimilar characteristics, the Kg can give clues to each model’s general ability to correctly 
classify sites based on how it is portioned into site-likely and unlikely areas. When the Kg is 
combined with the use of classification errors, a more accurate understanding of a model’s 
ability is gained. 
  
The gain statistic has drawbacks, most importantly that while it does provide a single measure of 
correct site predictions, it does not distinguish between the completeness or efficiency of a 
model’s classification. A model biased toward completeness may encompass all of the known 
archaeological sites but do so only because the site-likely area covers a large region. On the other 
hand, a model biased toward efficiency may minimize the region of site-likely, but also correctly 
classify fewer known sites. It is possible to have very different models of a given area with the 
same gain statistic, but very different classification rates. In practice, the Kg is most useful when 
considered in tandem with the false-negative and false-positive classification error rates.  
 
In the model evaluations presented below, classification errors are specified when they can be 
derived from the data in the reports. Since a minority of the reports actually contain the 
information necessary to derive classification error rates, however, the Kg is used as an overall 
measure. As noted above, the best application of the Kg is as a measure of efficiency between 
different iterations of the same model and to determine the most efficacious parsing of 
completeness versus efficiency combined with the lowest possible classification error rates. It is 
used in these model evaluations because it is the most common measure in the body of APM 
research literature and because it is flexible enough to be derived from many models even when 
they lack performance details. Throughout the rest of the Pennsylvania predictive model set 
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project, the Kg will be used within the modeling process to assess how models react to different 
environmental variables, to determine how to most efficiently classify model results, and to 
compare models within modeling regions.   
 
MODEL EVALUATIONS 
 
In the following section, the selection of APM models chosen for detailed evaluation are 
presented in chronological order of publication. These evaluations will contain pertinent 
information on the project for which the modeling was undertaken, model type, variables, 
methods used, validation, and overall assessment. Where possible based on the data available in 
each of the reports, the validation section includes tables with values used to derive the Kg. In 
order to understand the content of these tables, the reader is referred to the detailed discussion in 
Appendix A. 
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Bailey, Douglas L., and Albert A. Dekin 
1980 A Survey of Archaeology, Bi Story and Cultural Resources in the Upper Delaware 

National Scenic and Recreational River, Pennsylvania and New York States. E.R. 
1981-0311-42-A. Prepared for; United States Department of Interior National Park 
Service Mid-Atlantic Region, Philadelphia, Pennsylvania. Public Archaeology 
Facility, Department of Anthropology, State University of New York, Binghamton, 
New York. 

 
Region: 
Initial model: Callicoon, New York, and Damascus, New York, USGS quadrangles. 
Final model: Upper Delaware National Scenic and Recreational River, between Hancock, New 
York and Port Jervis, New York. 
 
Significance:  
The significance of this model is in its developmental approach from a simpler associative model 
developed for previous projects, to a more refined judgmental model that was tested and applied 
to a different region. 
 
Model Type:  
Judgmental 
 
Variables: 
The variables chosen for this model were all based on measures of the environment within the 
project area (Table 4). The particular selection of variables was influenced by previous studies 
within the Southern Tier of New York State, principally those of the I-88 corridor, Tioga River 
valley, and Elmira-Lowman Highway Corridor studies (Versaggi 1979a, 1979b). 
 

Table 4 - Model Variables used by Bailey and Dekin (1980) 

Variable 
Stream Rank (Strahler systems; highest rank stream only) 
Confluence (highest rank confluence only) 
Slope (proportion of hex area with less than 5% slope) 
Bog (largest bog only) 
Lake (largest lake only) 
Valley Train (largest exposure only) 
Alluvial Fan (largest exposure only) 
Kame (largest kame only) 
Islands (in lake or river; largest island only) 
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Model Methodology:  
The goals of this model were to: 1) test the general applicability of a form of weighted “land-
suitability scoring” model for the prediction of prehistoric site locations; and 2) aid in the 
planning and resource management of the Upper Delaware National Scenic and Recreational 
River between Hancock, New York and Port Jervis, New York.  
 
The findings of the earlier models and expert judgment were used to inform the selection and 
weighting of variables (Table 5). From this selection of variables, an initial model was created 
and applied across the Callicoon, New York, and Damascus, New York 7.5-minute USGS 
quadrangles. This model was applied to a 1-km hexagonal grid totaling 24 cells. These two 
USGS quadrangles were chosen as an ideal location to test this model methodology because each 
of the quads was well surveyed and a large number of sites had been identified in a variety of 
upland and lowland settings. 

  

Table 5 - Variable Weights from Bailey and Dekin (1980) 

Variable Criteria Score 

Highest stream rank in hex (Strahler systems) 

Delaware River 6 
After confluence of two rank 2 streams 3 
After confluence of two rank 1 streams 2 
Feeder stream 1 

Highest rank stream confluence with other 
body of water Incoming Stream Rank or that 

stream 

Slope (flat terrain of slope < 5%) 

75-100% of hex 4 
50-74% of hex 3 
25-49% of hex 2 
1-24% of hex 1 
0% of hex 0 

Floodplain 

75-100% of hex 4 
50-74% of hex 3 
25-49% of hex 2 
1-24% of hex 1 
none 0 

Physiographic features (bog, lake, kame, 
valley train, alluvial fan, islands 

Diameter 24mm on 7.5ʹ USGS quad 4 
Diameter 16-24mm on 7.5ʹ USGS quad 3 
Diameter 8-15mm on 7.5ʹ USGS quad 2 
Diameter 1-7mm on 7.5ʹ USGS quad 1 
none 0 
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Based on the weights in the table below, the highest weight represented by each variable per cell 
was selected and summed for variables within each cell. The identification and measurement of 
these variables was done through measuring the USGS quadrangles by hand. Additionally, a 
method of using “proximity effects” was used by adding half the score of any component of the 
physiographic features variable that were found in a neighboring cell. In a sense, this approach 
anticipates and addresses the proximity issues raised as a result of Stewart and Kratzer’s (1989) 
model (see below). The encouraging results from the application of this model to the Callicoon 
and Damascus quadrangles allowed the authors to apply it in the same way to the Upper 
Delaware River study area from Hancock to Port Jervis, New York. The variables, weights, and 
procedures were applied in the same manner within the two separate study areas.  
 
Model Classification, Efficacy, and Performance:  
Bailey and Dekin (1980) reported the findings of the initial test model applied to the Callicoon 
and Damascus USGS quadrangles. These results were based on the number of previously known 
sites that were not directly used to create the model weights, but the knowledge of which most 
likely has some influence on the authors’ judgment. Results for the Upper Delaware National 
Scenic and Recreational River, between Hancock and Port Jervis study area were not provided. 
This is because the model was applied to this region as a planning tool and not for a specific 
survey. 
 
The way in which the percentage of hexagonal cells and site percentages were reported does not 
allow for the calculation of classification rates. The total number of cells per sensitivity strata 
would need to be known, and trying to derive those from the information provided in the report 
results in conflicting estimates. However, from the information provided, Kg gain statistics can 
be calculated.  
 
Bailey and Dekin stratified their model into four classes of sensitivity, Very High, High, 
Medium, and Low. Based on the information presented in their report, the following Table 6 can 
be created (note, the total of 101% of the area column is an error in the original report). Within 
the highest sensitivity ranking, the model included a total of 13% of the cells within the study 
area, which contained 61% of the known archaeological sites, for a Kg = 0.787. This 
classification appears to be very good.  
 
With the information included in the report that can be used to identify classification errors, the 
true measure of this classification cannot be fully understood, but based on this information it 
looks quite successful. The high sensitivity stratum contained 15% of the area and 23% of the 
sites for a Kg of 0.348. In the medium sensitivity stratum, the classification appears to be much 
less successful with 48% of the area and 16% of the sites. Indeed the model classified in the 
correct direction, with fewer sites in larger areas. However, the jump in area was quite significant 
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for a zone considered to have moderate sensitivity, and the negative Kg actually signals a model 
class with negative prediction power. The medium sensitivity class was actually less likely to 
contain sites than by chance alone. The low sensitivity area contained 25% of the area and zero 
percent of the site.  
 

Table 6 - Kvamme Gain for Classification from Bailey and Dekin (1980) 

 
 
 
 
 
 
 
 
 
A possible approach to remedying the very large percent of the study area present in the medium 
sensitivity zone would be to collapse the very high and high zones into site-likely, and medium 
and low zones into site-unlikely. In this segmentation, the site-likely area would contain 28% of 
the area and 84% of the sites, for a Kg of 0.666. The site-unlikely area would cover 73% of the 
study area and contain only 16% of the sites, Kg = -3.562. While a not-insignificant percent of 
sites are still located in site-unlikely, the percentage of the study area considered to have site 
potential is greatly decreased.  
 
While there was a notable deficiency in the medium sensitivity stratum, the model overall 
appears to work quite well. With the data provided, it appears that the fit of percent sites in a 
site-likely area is quite good and reasonably balanced. However, additional information would be 
required to fully investigate the results.  
 
Assessment: 
As noted above, the classification of this model cannot be accurately determined, but, overall, the 
gain statistic for the Callicoon and Damascus, New York, test area appears promising. Following 
the model test application, the authors listed a series of model limitations, which included the 
difference in landscape between the Southern Tier of New York and the Delaware River Valley; 
the effect of these two regions on the classes of variables and weights; the need to ground-truth 
the USGS maps; and the effects of urbanization on site preservation. However, based on this 
finding, the authors felt that this “empirically-based test supports the applicability of the SUNY-
Binghamton model for predicting prehistoric site locations throughout the Upper Delaware 
Valley Scenic and Recreational River” (Bailey and Dekin 1980:285).  
 

Ranking 
% of 
Area 

% of 
Sites Kg 

Very High 13% 61% 0.787 
High 15% 23% 0.348 
Medium 48% 16% -2.000 
Low 25% 0% n/a 
Total 101% 100% 
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The application of the model to the Upper Delaware National Scenic and Recreational River 
between Hancock and Port Jervis, New York, study area required a different stratification of the 
summed variable weight as compared to the test model. This was foreseen by the authors given 
the differences in study area physiography. While this model was not tested within the study 
area, the authors noted the general geographic distribution of high- and low-ranking cells through 
the area. They concluded with a few tentative hypotheses based on the mapping of sensitivity 
ranks within the study area. These observations centered around the known density of sites 
between the northern and southern halves of their study area and high terrain restriction; multi- 
versus single-component sites may have contributed to this pattern. While these observations do 
not aid in the assessment of the model results, they are important to the implementation and 
interpretation of any APM within a given study area. 
 
It appears that the goals of this model were achieved with the use of these variables and 
judgmental weighting strategy. While the full diagnosis of performance cannot be achieved 
without more information on the model itself, it seems quite likely that this model would perform 
well in the intended Upper Delaware Valley study area. In essence, this model is a great example 
of basic “camping” strategy; searching for dry, level ground near water. The additions of weight 
for topographic features and the additional weighting for proximity to such features likely 
contribute to the model’s success. The addition of these two methods set this model apart from 
many basic judgmental models. The use of topographic features in this case is pretty specific to 
the glaciated portions of Pennsylvania, and the use of stream orders is tailored around the 
Delaware River as the central feature. These variables and weights would require adjustment to 
tailor this model to other areas of the state. 
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Stewart, R. Michael, and Judson L. Kratzer 
1989 Prehistoric Site Locations on the Unglaciated Appalachian Plateau. Pennsylvania 

Archaeologist, 59(1), pp.19-36. 
 
Region:  
Unglaciated Plateau in Armstrong County, Pennsylvania 
 
Significance:  
The significance of this model is that it was a transitional model from the earlier regional 
settlement pattern analysis studies to computerized APMs. As a study published in the journal 
Pennsylvania Archaeologist, this study is frequently cited and discussed. 
 
Model Type:  
Qualitative 
 
Variables:  
The variables utilized by Stewart and Kratzer (1989) were environmentally based. The variables 
listed in Table 7 represent qualitative assessments of a combination of environmental factors to 
which the authors associate high archaeological sensitivity. This association is based on regional 
survey results, experience, and analysis of 44 known sites within the region of the study (Stewart 
and Kratzer 1989:27). 
 

Table 7 - Model Variables Utilized by Stewart and Kratzer (1989) 

Variables 
Slope < 15% 
Prominent upland flats overlooking stream valley 
Saddles between drainage divides and prominent upland flats 
Areas near the head of active drainages 
Areas near the head of inactive drainages 
Upland flats adjacent to a first order stream or drainage and in 
proximity to a stream confluence 

 
Model Methodology:  
The model presented in this study established high and low sensitivity zones based on the 
environmental variable associations in Table 7. The presence and absence of these variables was 
determined from an analysis of 7.5-minute series USGS quadrangles of the Unglaciated Plateau 
physiographic section of the Kittanning areas of western Pennsylvania. The combinations of 
variables that contributed to an assessment of high sensitivity were established by the authors 
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based on their intuition, regional studies, and empirically from 44 documented sites within the 
region. 
 
Prior to the stratification of the study region into high and low sensitivity, the authors conducted 
a walking survey of portions of the area to confirm areas of disturbance and ground truth the 
USGS maps. Following this field check, the region was stratified based on the presence of the 
variable associations and field observation. Once stratified, the authors conducted a shovel test 
survey of the study area. 
 
A total of 23 areas of undisclosed size along four alignments were surveyed. A 15-m shovel test 
interval was used within both high and low sensitivity areas. Additionally, areas with the 
potential for deep soils were soil augured to determine soil depth. Areas of steep terrain were 
walked to identify potential rockshelters. The results of this field survey were used to test the 
model 
 
Model Classification, Efficacy, and Performance: 
This model was not validated through the referencing of known sites. This may be because there 
were no known sites within the area of investigation. However, the model was field tested 
through the use of 15-m interval shovel test units in both high and low sensitivity areas. Areas of 
slope greater than 15% were inspected for the presence of rockshelters. 
 
A total of 23 areas were surveyed for the presence of archaeological sites. Of these 23, the split 
between high and low sensitivity was nearly equal with 12 high and 11 low sensitivity areas. A 
total of 5 of the 23 survey areas contained archaeological material; 18 areas were absent of such 
evidence. Of the five areas containing archaeological material, two were stratified as low 
sensitivity and three as high sensitivity.  
  
The classification results of this model were somewhat poor, but were likely biased to some 
degree by the small sample size of survey areas (Table 8). Three of the five archaeological sites 
were identified within high sensitivity survey areas, whereas the remaining two were in low 
sensitivity areas. The resulting classification indicated that 60% of the identified sites were 
correctly classified, but the remaining 40% were misclassified (Table 9) This was a rather large 
percent of misclassification. Calculating the gain based on a total of 47.8% of the survey 
consisting of high sensitivity containing 60% of the identified sites resulted in Kg = 0.203. This 
gain was quite low and a signal that this model classified site locations only slightly better than 
chance alone. 
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Table 8 - Probabilities of Assignment for Stewart and Kratzer (1989) Model 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  

Present 
(M) 

Absent 
(M') Total % 

Site 
Observation 

Present 
(S) 

0.130 (3) 0.217 (2) 5 21.7% 

Absent 
(S') 

0.348 (8) 0.435 
(10) 18 78.3% 

 
Total 8 12 23 1 

 
% 47.8% 52.2% 1 

  
Stewart and Kratzer (1989) designed this model to test assumptions regarding the usefulness of 
certain environmental variables for predicting site locations. Their intent was not necessarily to 
locate areas of high sensitivity for planning purposes, but more so to see if the variables referred 
to in many regional syntheses were truly good predictors. In this context, the end result of model 
classification was not the best measure of model success. The low Kg successfully addressed the 
goals of the model by suggesting that the variables chosen were not good predictors of site 
location. In this sense, the model was effective in achieving its goals. However, bias introduced 
through a small survey area sample and through the lack of quantifying the variables of interest 
cast doubt on the truth of the model results. 
 
While this model performed somewhat well in its goal to identify the usefulness of certain 
environmental variables, the lack of quantification or ability to identify the contributions of each 
variable made the results less than useful for the current project. More to the point of the current 
project, this model performed only slightly better than chance in its ability to stratify areas of 
high archaeological sensitivity.  
 

Table 9 - Classification Successes and Errors for Stewart and Kratzer (1989) Model 

 
Conditional Probabilities 

  
Model Prediction 

 

  

Present 
(M) 

Absent 
(M') Total 

Site 
Observation 

Present 
(S) 

0.60 0.40 1 

Absent 
(S') 

0.44 0.56 1 
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Assessment: 
The poor classification performance of this model gives it little utility in the implementation of 
the statewide model for this project. However, the value in Stewart and Kratzer’s (1989) study 
was their synthesis of regional survey findings and their own assessment of the model. As stated 
by the authors, the intention of this model was to blend empirically collected data with a more 
deductively oriented approach to variable selection. This was done in part out of a desire to draw 
more explanatory power from the data, but also because at the time gaining accurate measures of 
environmental variables was very time consuming and costly. 
 
Stewart and Kratzer (1989:31) acknowledged that their model performed “reasonably well” 
given its qualitative limitations. While their assessment was arguable given the results detailed 
above, they did go on to provide a number of potential improvements. First, they suggested that 
using a cutoff of 8% slope would be more productive than that common use of 15%. Second, the 
authors observed that they were only testing a small portion of larger high sensitivity zones and 
that sites may exist in only portions of these zones. The authors stated that, “[s]ites are lacking in 
some areas simply because more attractive settings exist nearby. The density of prehistoric 
populations may have never reached the point where all potentially attractive environments are 
being utilized” Stewart and Kratzer (1989:31).  
 
This is a very important observation and gets to the core of one issue with the interpretation of 
model results and the gain statistic. APMs most often seek to identify landforms that are similar 
to landforms that are known to contain archaeological sites. This does not imply that every high 
sensitivity landform will actually contain an archaeological site. The model essentially identifies 
the universe of locations from which Native Americans may have settled based on the modeled 
parameters. If prehistoric settlement density in the study area was quite low, then a perfectly 
good model may have a poor rate of successful classification. This situation would also lead to a 
relatively low Kg statistic because variations in the small site sample can have big consequences 
on the gain. The authors suggested that models may rank the zones of sensitivity relative to 
neighboring zones in order to combine the intrinsic landform sensitivity with that of the broader 
region. Finally, Stewart and Kratzer pointed out that their model would benefit from a wider 
range and quantification of environmental variables. 
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Neusius, Sarah W., and Phillip D. Neusius 
1989 A Predictive Model for Prehistoric Settlement in the Crooked Creek Drainage. E.R. 

1989-R016-042-A. Prepared for Pennsylvania Historic and Museum Commission, 
Harrisburg, Pennsylvania. Archaeology Program, Department of Sociology and 
Anthropology, Indiana University of Pennsylvania, Indiana, Pennsylvania.  

 
Region: 
Crooked Creek Drainage in Armstrong and Indiana Counties, Pennsylvania. 
 
Significance:  
Good example of earlier non-GIS expert judgment weighted model methodology. This model is 
frequently referenced by other models in this region.  
 
Model Type:  
Judgmental 
 
Variables: 
The variables selected for this model were based on basic environmental features such as slope, 
aspect, and distance to water, but also incorporated more complex variables such as the USDA 
soil ratings. In addition, this model incorporated the variable of proximity to documented historic 
Indian Paths (Wallace 1965). This variable was seen as a cultural or social variable, but the 
location of paths clearly had an environmental component. In the application of the model, the 
proximity to Indian paths variable was dropped due to difficulty of mapping these trails.  
 
The selection of this set of variables was based in part on Jochim’s (1976) assertion that there 
were three important goals that factored into hunter-gather decision on settlement location. These 
goals were: 1) proximity to economic resources; 2) shelter and protection from the elements; and 
3) preference for a view shed that offered good defense and hunting vantage points. Neusius and 
Neusius focused on Jochim’s second goal of shelter from the elements to aid in the establishment 
of the variables within this model. In order to approach aspects of the landscape that may have 
played a part in this goal, the authors chose the environmental variables listed in Table 10. 
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Table 10 - Initial Variable Selection for Upland Site Model (Neusius and Neusius 1989) 

Variable 
Slope 
Topographic setting 
Aspect 
Proximity to Indian path 

Proximity to water source 
Agricultural suitability (USDA) 
Openland wildlife suitability (USDA) 
Woodland wildlife suitability (USDA) 
Wetland wildlife suitability (USDA) 

 
Model Methodology:  
The goal of this model was to create “a means of predicting site occurrences which would be 
useful to the Pennsylvania Bureau of Historic Preservation (BHP) in its efforts to manage and 
protect cultural resources in this part of the state” (Neusius and Neusius 1989:3). To this end, the 
authors’ chose to model the location of upland prehistoric sites within the Crooked Creek 
drainage in the Unglaciated Allegheny Plateau physiographic section. The methods chosen for 
this model were informed in part by this goal, but the authors were also seeking to produce a 
hybrid inductive/deductive approach that followed the approach discussed by Stewart and 
Kratzer (1989). To achieve this goal, the authors chose an expert judgment weighted sum model 
that was field tested. 
 
The nine variables chosen to represent this model are listed in Table 11. These variables were 
selected based on data availability, previous surveys in the region, and the belief that they 
contributed to understanding prehistoric settlement choices. The classification and weighting of 
each variable was based on the same judgmental factors. The weighting scheme used a basic 
interval scale of weights that ranged from 0 to 3 based on the hypothesized sensitivity of each 
variable class (Table 11). For each quadrant within the study area the overall sensitivity score 
was based on the sum of each of the nine individual scores. The highest weight for each variable 
was obtained through the presence/absence of features or hand measurement from USGS 
quadrangle maps or USDA soil maps. The weight obtained for each variable was summed to 
produce a total sensitivity score for each quadrant. As stated by Neusius and Neusius: 
 

We assume that the influence of these factors is additive and that a sum of these variables 
can be used to score areas in terms of their attractiveness… Thus, the model will produce 
total scores for attractiveness which can be ranked and compared with site distributions to 
see if the expectation that more highly ranked areas are more likely to contain sites can be 
met [Neusius and Neusius 1989:29]. 
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Table 11 - Judgmental Weight Assignment of Variables for Neusius and Neusius (1989) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This model was applied to the Elderton, Pennsylvania, 7.5-minute USGS quadrangle. The 
quadrangle was divided into 1,610 square quadrants measuring 300-m on a side. Each of the 
variables was measured for each of the quadrants and the total of the individual weights were 

Variable Weight Weight 

Slope 

0-3% 3 
4-9% 2 
10-15% 1 
>15% 0 

Topographic Setting 

terrace, floodplain, stream bench, 
river bluff 3 
saddle, hilltop, ridge top 2 
foot slope, toeslope 1 
hill slope, side slope 0 

Aspect 

south, southwest, east 3 
northeast, southwest, flat 2 
north, west, northwest 1 
no common direction 0 

Proximity to Indian path 

path located in block 3 
path in one or more adjacent blocks 2 
path one block distant 1 
no path in vicinity 0 

Proximity to water source 

water source located in block 3 
water source in adjacent blocks 2 
water source one block distant 1 
no water source in vicinity 0 

Agricultural suitability 
(USDA) 

class I 3 
Class II 2 
Class II and IV 1 
Class V, VI, VII, and VII 0 

Openland wildlife 
suitability (USDA) 

well suited 3 
suited 2 
poorly suited 1 
unsuited 0 

Woodland wildlife 
suitability (USDA) Score as for Open wildlife suitability 
Wetland wildlife 

suitability (USDA) Score as for Open wildlife suitability 
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summed to create a total sensitivity number for each cell. Within this encoding process, Neusius 
and Neusius dropped the variable measuring the proximity to Indian paths because they found 
that Wallace’s (1965) maps did not translate well to the USGS base maps. The remaining eight 
variables were utilized. Upon deriving the summed sensitivity value for each of the 1,610 
quadrants, those representing lowland settings were removed from the model. With the intention 
of modeling the location of upland sites, a total of 1,456 quadrants were selected for this model. 
 
The eight variable weights were summed within 1,456 upland quadrants within the study area. 
The summed weights ranged from a low of 0 to a high of 13. This range was then divided into 
five sensitivity classes: Sites Highly Probable, Sites Probable, Sites Possible, Sites Improbable, 
and Sites Highly Improbable. The counts of quadrants assigned to each zone were 53, 193, 545, 
532, and 133, respectively. The method by which the range of sensitivity values was divided into 
this five-class ranking was not disclosed.  
 
To field test this model Neusius and Neusius selected a representative 1% sample of 15 
quadrants from the total 1,456 upland quadrants. This field test was carried out through 
pedestrian surface survey and subsurface shovel testing. Following the guidelines on field survey 
established by the BHP, pedestrian surface survey was conducted in areas of greater than 50% 
surface visibility, and shovel test units were dug in areas of less than 50% surface visibility. 
Shovel test units were placed at a 10-m interval within transects that were placed 20 m apart. All 
shovel test units were excavated into sterile subsoil and their contents screened through 1/4-inch 
mesh hardware cloth. This field testing strategy was employed in the same way within each of 
the 15 survey quadrants regardless of their modeled sensitivity. Due to field conditions and soil 
disturbance, additional quadrants were surveyed to substitute for those that could not be 
surveyed. At the conclusion of this survey a total of six upland sites and one lowland site were 
identified. Forty percent of the upland quadrants were found to contain at least one prehistoric 
archaeological site. 
 
Model Classification, Efficacy, and Performance:  
The model constructed to locate upland sites within the Crooked Creek drainage was tested 
through a survey of 15 300-m square quadrants. This represented a 1% sample of the 1,456 total 
upland quadrants within the Elderton, Pennsylvania, USGS quadrangle. In total, six upland 
archaeological sites were identified within the 15 quadrants that made up the 1% sample. Table 
12 shows the total cells within each sensitivity ranking, the number of cells for the 1% sample, 
the number of sites identified within each ranking, and the Kg statistics. As seen in this table, the 
sensitivity ranking of the 15 quadrants in the 1% sample were representative of the sensitivity 
ranking distribution of the entire 1,456 quadrant study area.  
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Table 12 - Ranking of Quadrants, Sites Identified, and Gain Statistic (Neusius and Neusius 1989) 

Ranking 
Total 
cells 

% of 
cells 

Surveyed 
cells 

% of 
survey 

Sites 
Identified 

% of 
sites Kg 

Sites Highly Probable 53 4% 1 7% 1 17% 0.600 
Sites Probable 193 13% 2 13% 1 17% 0.200 
Sites Possible 545 37% 6 40% 3 50% 0.200 

Sites Improbable 532 36% 5 33% 1 17% 
-

1.000 
Sites Highly 
Improbable 133 9% 1 7% 0 0% n/a 
Total 1456 100% 15 100% 6 100%   
 
The six sites identified within the survey were found in four of the five sensitivity rankings. The 
largest number of sites (n=3) was identified in the Sites Possible ranking, which was the largest 
ranking in terms of quadrants surveyed and quadrants overall. The gain statistics indicate that the 
Site Highly Probable ranking achieved a Kg of 0.600, with 17% of the sites in 7% of the area. 
This gain is relatively good, but based on a very small site sample. The Sites Probable and Sites 
Possible zones each achieved a gain of Kg = 0.200, which is relatively poor, with only a slightly 
higher percentage of sites than the area in that ranking. The Sites Improbable ranking gain 
of -1.000 is quite good given the intention of that zone. The negative gain of this ranking 
suggests that sites are less likely to be found here based on the model than by chance alone; this 
is a pretty good way to define improbable.  
 
In an attempt to quantify their results, Neusius and Neusius collapsed the highest three sensitivity 
rankings into a site-likely category and the lowest two into a site-unlikely category. Table 13 
shows the results of the collapsed rankings in terms of numbers and proportions of quadrants 
with sites and those without. Of the six quadrants with sites, five were correctly classified (83%) 
and one was incorrectly classified (17%). Of the remaining nine quadrants without sites, four 
were considered site-likely (44%) and five as site-unlikely (56%). The classification percentages 
are depicted within Table 14. The gain statistic for the collapsed rankings is Kg = 0.280. This 
gain in combination with the classification percentages tells an interesting story of these results. 
On the outset, the low gain does not inspire much confidence as the classifications show that this 
gain suffers because of a large percentage of false-positive classification errors. On its own, the 
83% correct classification and 17% false-negative misclassification of sites does not make these 
necessarily bad results, but the large number of false-positives drive the gain statistic down. With 
the assumption that false-positives are much less costly than false-negatives, the balance of this 
model toward completeness over efficiency shines a more positive light on the low gain of 0.280. 
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Table 13 - Probabilities of Assignment for Neusius and Neusius (1989) Model 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  

Present 
(M) 

Absent 
(M') Total % 

Site 
Observation 

Present 
(S) 

0.333 (5) 0.067 (1) 6 40.0% 

Absent 
(S') 

0.267 (4) 0.333 (5) 9 60.0% 

 
Total 9 6 15 1 

 
% 60.0% 40.0% 1 

   
 

Table 14 - Classification Success and Error for Neusius and Neusius (1989) 

 
Conditional Probabilities 

  
Model Prediction 

 

  

Present 
(M) 

Absent 
(M') Total 

Site 
Observation 

Present (S) 
0.83 0.17 1.0 

Absent (S') 
0.44 0.56 1.0 

 
Further, referring to the gain statistic, Table 12 shows that the Sites Highly Probable class 
performed pretty well, but when collapsed its performance was moderated by the large areas 
included in the next two rankings. While a Fisher’s Exact test performed on the collapsed results 
by Neusius and Neusius indicated that there was no statistical relationship between the two 
rankings, this test fails to incorporate the broader implications of the test results. Given that the 
results presented here represent a small number of sites and only a 1% sample survey, they are 
encouraging. The positive aspects of a relatively high correct classification and low false-
negative classification are off-set by a rather high false-positive result. While the high false-
positive result leads to a low Kg, but this does not lead to a poorly performing model.  
 
With a goal of seeking to assist the BHP in its efforts to protect cultural resources in this 
drainage, it is somewhat difficult to say whether this model achieved its goal. In the end, it did 
produce a relatively decent performing model, albeit not the most efficient in regards to false-
positive results, but how it may have assisted the BHP since its creation is impossible to know. 
Outside of the BHP, this model clearly influenced a debate about upland settlement and APM 
within the state; this is clear from the frequent citations of this report. Likely, this discussion did 
have some degree of influence on the way BHP understood upland settlement within the 
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unglaciated portions of the Allegheny Plateau, as well as fostering the debate on the utility of 
APM. In this sense, this model achieved its goal.  
 
Assessment: 
Neusius and Neusius (1989:53-55) identified a series of issues, which fall within the categories 
of field testing and modeling, that may have negatively affected this model. First, in regard to 
field testing, the authors noted that the arbitrary quadrant size was an issue relative to landform 
size and site size. This was an extension to the Modifiable Unit Area Problem (MAUP) (Gehlke 
and Biehl 1934), which stated that the arbitrariness of the areal unit of aggregation can have a 
dramatic effect on the outcome of statistical tests of those units. Second, Neusius and Neusius 
identified surface visibility as a major factor in site detection during their field effort. These are 
both very valid concerns and are issues with many models, not inherent to this model type or 
application. With small sample sizes, the effects of detecting additional sites and the classes they 
fall in can have dramatic effects of the resulting statistics. 
 
The other issues noted by Neusius and Neusius concerned the difficulties of obtaining accurate 
measurements from paper USGS maps, as well as concerns related to the nature of 
archaeological site types. Concerning the USGS maps, accurate measurements are an issue with 
any methods, GIS or otherwise, but this concern has been greatly reduced with today’s 
availability of high resolution elevation and environmental data. Finally, Neusius and Neusius 
commented that this type of model is more applicable to locating habitation sites, as opposed to 
special purpose, extraction, and rockshelter sites. This is another valid concern that applies to 
most model types. One approach to circumvent this is to build models for different site types. 
However, the poor data quality of most identified site samples limits the ability to model by site 
type. 
 
 Along with the difficulties outlined above, the problems with this model include a small sample 
size and somewhat difficult to interpret performance results. The positive aspects of this model 
are a straightforward and well documented model method and performance results that when 
viewed from a different perspective become encouraging. The gain statistic that appears 
relatively poor at first glance must be viewed with respect to the classification percentages to 
understand why it appears so low. The larger of the two misclassifications are in the false-
positive category, which are wasteful errors that are nonetheless generally preferable over gross 
errors. If the summed sensitivity distribution were reclassified in different rankings, the large 
area of false-positives in the Sites Possible ranking could be reduced, thereby making the model 
more effective. While the data to do so were not presented within this report, it is likely that the 
model results could be improved. Even with the results as presented, the outcome of this model 
is encouraging and appears to be a good start to representing the upland site distribution of the 
Crooked Creek drainage.   
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Whitley, Thomas G., and Keith R. Bastianini 
1992 The Design and Testing of a Mathematical Archaeological Predictive Model for the 

APEC, DCQ, and Storage and Transport Project Areas, Pennsylvania. E.R. 1992-
R001-042-A. Prepared for Texas Eastern Gas Pipeline Company, Houston, Texas. 
Center for Cultural Resource Research, Pittsburgh, Pennsylvania.  

 
Region: 
The APEC study area crosses almost the entire width of southern Pennsylvania. The DCQ 
project covers almost the entire width of central Pennsylvania, and the Storage and 
Transportation study is located within Clinton and Centre Counties, Pennsylvania. 
 
Significance:  
Whitley and Bastianini created a novel and interesting approach to incorporating environmental 
background correlation testing into model weighting. This approach allowed for the inclusion of 
all the variables under consideration, but added factor and individual weights equivalent to each 
variable’s ability to discriminate sites from background values.  
 
Model Type:  
Correlative with testing 
 
Variables: 
The variables used in this model were all based on measures of the environment (Table 15). 
These variables were selected based on data availability and because they were easily measured 
for each archaeology site. These are commonly used variables within this APM report sample. 
Whitley and Bastianini expressed the desire to include additional variables into this model, such 
as soil pH and capacity, nearest lithic source, and number of frost-free growing days, but found 
the measurement of such variables unfeasible given their time constraints.  
 

Table 15 - Variables Used in Whitley and Bastianini (1992) 

Variable 
Elevation  
Slope orientation 
Percent Slope 
Topographic landform 
Distance to water 
Stream order 
Stream intersection 
Depth to bedrock 
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Model Methodology:  
The model created by Whitley and Bastianini was an outgrowth of a number of Phase I 
archaeological surveys conducted by the Cultural Resource Management Program (CRMP), 
Department of Anthropology, University of Pittsburgh. Specifically, these projects included the 
DCQ Contract Adjustment Program, the Storage and Transport Project, and the APEC Phase I 
survey, all conducted within Pennsylvania. Based on the data gathered from these surveys, the 
authors sought to construct a standardized predictive model that could utilize the survey data, be 
applied to a new area without recalculating the entire model, contribute to our understanding of 
prehistoric settlement, and aid in the statewide management of cultural resources. As stated by 
Whitley and Bastianini: 
 

The problematic nature of aboriginal settlement patterning and the elucidation of a 
processual understanding of human/environment relationships can be addressed most 
adequately by a model of the following design…The end result of this synthesis is the 
generation of aboriginal site location hypotheses which, hopefully, will be of utility in 
planning future cultural resource reconnaissance efforts, allowing better management for 
the prehistoric cultural resources of Pennsylvania as a whole [Whitley and Bastianini 
1992:1]. 
 

The model methodology developed to address this goal was in essence the weighting of classes 
within environmental variables based on the difference of proportion between sites and 
background values within that class. Further, the authors proposed an approach to relatively 
weight each variable based on the total difference between sites and background values within all 
classes of that variable. This approach differs from the correlative models without testing in that 
the variables chosen to represent the model were tested against background environmental values 
to prove or disprove a significant correlation between site locations and those values. This 
method also differs from other applications of the correlative model with testing, in that once a 
significant correlation is proven, most of the models of this type either stop testing or move on to 
use only those variables in other models such as regression. Whitley and Bastianini utilized the 
results from the correlation testing to further subdivide the variables into classes that were then 
weighted based on the result of the correlation test. In this way, the more common method of 
accepting or rejecting an entire variable (e.g., elevation) based on the correlation test was 
replaced with a method that added positive or negative weights within classes (e.g., 100-200 feet 
elevation) based on the strength of the correlation within that class. The overall correlation of a 
variable was then reconsidered in a second step to multiply the class weights by the overall 
strength of correlation of that variable.  
 
At the beginning of the model building process, Whitley and Bastianini established the similarity 
of site locations and background environments between the three previously surveyed project 
locations (DCQ, Storage and Transport, and APEC) through physiographic, ecologic, and 
climactic background research. Following up on this, they used a method called Multi-
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Dimensional Scaling (MDS) to compare the eight environmental variables (Table 15) for each of 
the 92 identified sites between the three project areas. The MDS method is an ordination 
technique that uses a similarity matrix in the computation of N dimensions (in this case three 
dimensions) that can be plotted to visualize the similarities between data points and data sets. 
Whitley and Bastianini produced three plots, each comparing two dimensions of the MDS 
results. Based on a qualitative visual interpretation of these plots, the authors felt confident that 
the site locations within each of the three project areas were sufficiently similar. Based on this 
similarity, they stated that predictive scores generated for the site sample within the APEC study 
area could be applied to and tested on sites within the DCQ and Storage and Transport project 
areas.  
 
This finding was the basis from which the modeling methods were built. As stated, one of the 
goals of this model was to create a method that allowed for the predictive scores of known sites 
to be calculated for one area and then exported to other areas without the recalculation of the 
model. The assumption here was that if two areas are similar enough in their environmental 
character, then the sensitivity score of a site or area should be comparable relative to the original 
test area. In this way, a new project area, once established as similar to the test area, could be 
measured based on the eight variables and then weighted based on the pre-established weights 
from the test area. The resulting sensitivity index of the new area could then be compared to a 
scale generated in the test area to judge whether it is likely to contain sites. This approach 
requires the calculation of the eight variables for only the area within the new project, as opposed 
to building an entire new model for each new project. If successful, this method would 
theoretically allow for the establishment of a set of variables and weights that incorporated 
correlations and were specific to a region or watershed.  
 
The preparation of the environmental variables began with the segmenting of the eight variables 
into classes. The segmentation was for the most part arbitrary, but did consider that range of 
measure that archaeological sites more often fall within. For example, elevation was broken 
down into seven classes from 0 to 2,000 feet, but then lumped into a single class for greater than 
2,000 feet because sites are less frequently found at that elevation.  
 
The first step at establishing correlations and weights began with a comparison of the percentage 
of sites located within classes of a variable to the percentage of that class representing the 
environmental background. Whitley and Bastianini completed all of the following correlations 
and weighting for all of the sites within their sample, as well as the sample broken down into the 
site ages of Archaic and Woodland, and the site types of Habitation, Isolated Finds, Small, and 
Medium-Large. Table 16 is an example of a table from Whitley and Bastianini comparing the 
percentage of sites and background for the classes of the elevation variable for all sites. These 
tables were created for each of the seven site groupings for each of the eight variables. Whitley 
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and Bastianini calculated the chi-squared statistic (χ2) for each of the tables. In the example 
below (Table 16), the authors reported a χ2 of 42.733, with 7 degrees of freedom, and a p = < 
0.001. Whitley and Bastianini used this significant p-value to reject the null hypothesis that the 
two samples had come from the same distribution and concluded that site locations can be 
differentiated from background values with the elevation variable. Repeating this test for each of 
the 56 combinations of site groups and variables, all but 11 combinations were found to be 
statistically significant.  
 

Table 16 - Example of Test against Background Values from Whitley and Bastianini (1992) 

Elevation by All Sites 

Subclass 
Sites 
(#) Sites (%) Total Area (%) 

0 -250 ft 0 0.00% 0.00% 
251 - 500 ft 22 25.29% 21.17% 
501 - 750 ft 44 50.57% 23.74% 
751 - 1000 ft 13 14.94% 9.74% 
1001 - 1250 ft 6 6.90% 8.29% 
1251 - 1500 ft 1 1.15% 10.29% 
1501 - 1750 ft 0 0.00% 5.09% 
1751 - 2000 ft 0 0.00% 6.17% 
2000 + ft 1 1.15% 15.51% 
Total 87 100.00% 100.00% 

 
From these tests, the sensitivity weights were calculated for each of the variable/site groupings 
that showed a significant difference. The weight, or predictive score (S), was derived by 
subtracting the proportion of the background area of a variable class (p2) from the proportion of 
sites within that class (p1), then multiplying that number by 10. Using the example data in Table 
16 from the 501-750 feet of elevation class, the calculation was S=10(p1 – p2) or S = 10(.5057 - 
.2374) equates to S = 2.68. The full calculation from the example data is shown in Table 17. The 
multiplication by a factor of 10 was done to make the numbers more readable. This calculation 
was completed for each of 308 combinations of variable classes and site groups for which the 
chi-squared test was significant. In the cases where the chi-squared test was not significant, S = 
0. The predictive score is essentially the 10 times the proportion of difference between site 
locations and background values for that class. The more positive the S value, the higher the 
percentage of sites vs. a lower percentage of background values within a class. Positive values 
were interrupted to be positive correlations and capable of being used to distinguish site location 
from random locations. Conversely, negative values were interpreted as negative correlations, 
but were equally useful in distinguishing site location from random locations. Values of zero 
were assumed to be equal to random. 
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Table 17 - Example of Predictive Score (S) for Elevation from Whitley and Bastianini (1992) 

S-score for Elevation by all sites 

Subclass 
Sites % 

(p1) 
Total Area % 

(p2) 
Predictive 
score (S) 

0 -250 ft 0.00% 0.00% 0.00 
251 - 500 ft 25.29% 21.17% 0.41 
501 - 750 ft 50.57% 23.74% 2.68 
751 - 1000 ft 14.94% 9.74% 0.52 
1001 - 1250 ft 6.90% 8.29% -0.14 
1251 - 1500 ft 1.15% 10.29% -0.91 
1501 - 1750 ft 0.00% 5.09% -0.51 
1751 - 2000 ft 0.00% 6.17% -0.62 
2000 + ft 1.15% 15.51% -1.44 
Total 100.00% 100.00%   

 
The predictive index (I) of a test location can be modeled as the sum of the predictive scores (S) 
for each of the selected variable classes at that test location: I = (S1 + S2 + S3 + … Sn). This is the 
same summed weight method that was used within many of the models evaluated in the current 
study. The I value was viewed as a relative probability of a site occurring in the test location. A 
positive value of I indicated a greater likelihood of finding a site, a low I value was a less likely 
place to find a site, and a zero I value was equivalent to random chance. The authors noted that 
the range in I value and what may be considered high sensitivity, was relative to the number of 
variables summed into that value and the character of the background environment.  
 
In the final step to creating this model, Whitley and Bastianini computed a relative weight (W) 
that was used as a factor weight to understand the overall importance of each variable. This 
weight was calculated for each variable by subtracting the largest S value (Smax) from the 
smallest S value (Smin) from each variable. Following the example from Table 17, the Smax was 
calculated as 2.68 for the 501-750 foot class, and the Smin equals -1.44 in the 2000+ foot class, 
therefore W = (Smax – Smin) or W = 2.68 – (-1.44) equates to W = 4.12. This value applied to the 
elevation variable as a whole, not just those specific classes. In some other models evaluated in 
this report, this weight (W) would be used to multiply the class weights to give a boost to those 
variables that were more strongly correlated. However, Whitley and Bastianini utilized this W 
score as a way to understand the impact of each variable and the dynamics between variables. 
Given that each class within a variable, no matter how big or small the W value, can have a 
positive or negative S value, the resulting predictive index (I) would be skewed if the two 
weights were combined.  
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To sum up, Whitley and Bastianini created a model building method that 1) used a chi-squared 
test to accept or reject the null hypothesis that sites and background values were from the same 
distribution; 2) divided each variable into arbitrary classes; 3) calculated the predictive score (S) 
for each class by subtracting proportion of background area from the proportion of sites and 
multiplying by 10, S=10(p1 – p2); 4) derived the predictive index (I) by summing all the values 
of S for each test quadrant or area of interest; and 5) computed the relative weight (W) by 
subtracting the smallest S value from the largest within each variable, W = (Smax – Smin). The 
final model was interpreted by viewing the highest I value as the most likely to contain sites, and 
the lowest as the least likely. In terms of other models in this study, the I value is the summed 
weight total sensitivity and the W is a factor weight used to help interpret the model.  
 
Whitley and Bastianini calculated predictive score (S) and relative weights (W) from each of the 
variable classes for the 79 sites within the APEC project area. Based on the qualitative inspection 
of the MDS plots, the authors felt the environments of the APEC area to be similar enough to the 
DCQ and Storage and Transport project areas to make them a suitable test for the model. The 13 
site locations within the DCQ/Storage and Transport project areas were divided into the same 
classes as those in the APEC area, and the corresponding S scores were summed to derive 
predictive indices (I) for each of the test sites. For the three historic sites in the test sample, the 
range in I values was -1.53 to 1.70. The 10 prehistoric sites had I values ranging from 1.66 to 
13.49.  
 
Model Classification, Efficacy, and Performance:  
Unfortunately, the data presented within the Whitley and Bastianini report make it nearly 
impossible to assess the effectiveness and performance of this model. The only results offered 
were the total sensitivity index scores for the 13 known sites within the DCQ and Storage and 
Transport study areas. These values ranged from I = -1.53 to I = 13.49. The lowest two 
values, -1.53 and -1.16, were for historic foundation sites; these were the only negative values in 
the site sample. The third historic site in the sample had a sensitivity index of 1.70. The 
remaining 10 prehistoric sites had values ranging from 1.66 to 13.49. Without an indication of 
background values, non-site values, or random sample values, it is impossible to know how this 
model performed relative to chance or any other measure. From the numbers provided, there 
appears to be a wide range in the sensitivity index for the 10 prehistoric sites. The sample mean 
of these sensitivity indices was I = 6.755, with a range of 11.83, standard deviation of 4.64, and a 
variance of 21.51. These statistics represent a distribution with a pretty wide range. The 95% 
confidence interval was ±2.87, with a range of I = 3.88 to I = 9.63.  
 
Attempting to gauge these results against a by-chance model, a background distribution of 
predictive indices was assumed to range from I = -14 to 14. This is a broad assumption, but 
lacking the true values, it is a starting point. The distribution of indices from the 10 sites in the 
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DCQ study area was compared to a run of 60,000 random samples of size 10 drawn with 
replacement from the assumed range of I = -14 to 14. A K-S test was applied to each of the 
samples to test whether the sensitivity indices from the site sample differed significantly from 
random. The p value from the K-S tests settled at p ≈ 0.18, rejecting the null hypothesis that the 
10 site sensitivity indices were drawn from a random population. As stated, this test is based on 
an assumption, but it does indicate that the results of the DCQ/Storage and Transport model 
application performed better than a by-chance model, but perhaps not substantially. Without 
additional information provided by the authors, it is impossible to assess this model further.  
 
The authors (1992:28-29) stated that this model fulfilled its goals and could be exported to other 
areas once recalculated for the new site sample. It may be argued that the variable classes are 
already tested against a by-chance model because they are calculated relative to the background 
values. Therefore, a positive I value is in itself a successful test against randomness. This 
argument may be the case, but lacking the data to support it, the results cannot be fully assessed. 
 
In addition to the results of the DCQ/Storage and Transport model test, a note of caution is 
required regarding the use of the chi-squared test in establishment of positive and negative 
correlations. Whitley and Bastianini’s use of percentages, as opposed to counts, within the chi-
squared test is inconsistent with standard practice. Furthermore, the use of cells with a value less 
than one and a test with greater than 20% of the cells containing a value less than five violates 
one of the principal assumptions of the chi-squared test (Yates et al. 1999). These two issues may 
lead to spurious results in the correlation of variable classes and site locations. This is a 
significant issue, because the method presented here used the results of the chi-squared test as the 
basis for the remainder of the calculations. If these tests are incorrect, the results would bias all 
steps that followed.  
 
A possible alternative to the chi-squared test in this situation would be a Mann-Whitney U Test. 
This is a non-parametric two sample test with a null hypothesis that both samples are from the 
same population. Conducting this test on the sample data from Table 16 yields a result of p = 
0.40 (two-tailed, U = 30.5). This result is not significant and the null hypothesis that the site 
sample and the background sample came from the same population cannot be rejected. The 
application of a K-S test yields comparable results to the U test. This result is counter to the 
significant result of the chi-squared test reported by Whitley and Bastianini. Based on this, the 
model’s validity, effectiveness to achieve its goals, and performance cannot be adequately 
assessed. 
 
Assessment: 
The model presented by Whitley and Bastianini (1992) is very creative in construction and 
appears to streamline the incorporation of correlation and weights into a single measure, the S 
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score. Further, the construction of a modeling method that would allow for the assessment of 
environmental background value similarity and application of a model by simply calculating the 
variables for a given area of interest is a compelling idea. While the same could be done for any 
judgmentally weighted or other correlative model, the packaging of correlation and weight into a 
single score would simplify the process.  
 
On the other hand, there were a number of assumptions built into this model that may or may not 
apply well across broad areas. The effect of dissimilarities in environmental background values 
would need to be thoroughly explored before the full implications of this method could be 
understood. Further, the building of calculations upon each other without internal checks may 
lead to errors being compounded throughout the process. Unfortunately, the small sample of test 
sites and limited test data presented in the report do not allow for the performance of this method 
to be assessed. Combined with the questionable use of chi-squared as a significance test, these 
deficits undermine the authors’ qualified acceptance of this model as having satisfied its goals. 
Revising the correlation tests, additional applications to environmentally similar areas, and 
additional information of the range of background values would be very helpful in assessing this 
promising method. 
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Hart, John 
1994  Development of Predictive Models of Prehistoric Archaeological Site Location, for 

the Lake Erie Plain and Glacial Escarpment in the Erie East Side Access Project 
Area Erie County, Pennsylvania. E.R. 1992-0858-049-E. Prepared for; Pennsylvania 
Department of Transportation, Harrisburg, Pennsylvania. GAI Consultants, 
Monroeville, Pennsylvania.  

 
Region:  
Lake Erie Plain and Glacial Escarpment, Erie County, Pennsylvania. 
 
Significance:  
This model represents one of the few and the best executed examples of a regression model 
within the sample of reports studied in this project. Hart used incorporated K-S tests for 
correlation testing with a stepwise logistic regression to produce this model.  
 
Model Type:  
Stepwise Logistic Regression 
 
Variables: 
The list of variables in Table 18 are environmental measures that Hart chose because of the 
availability of the data, their potential correlation to site location, and their use in previous 
regional surveys and models.  
 

Table 18 - Variables used by Hart (1994) 

Variable 

Distance to nearest stream 
Elevation above nearest stream 
Order of nearest stream 
Distance to nearest stream confluence 
Elevation above nearest stream confluence 
Slope (percent grade) 
Topographic Relief (1,000 m neighborhood) 
Elevation above Lake Erie 
Soil Texture 
Soil drainage class 
Depth to seasonally high water table 
Woodland suitability class 
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Model Methodology:  
The goal of this project was to create an APM to be incorporated into the development of the 
Environmental Impact Statement (EIS) for the Erie East Side Access study. From the outcome of 
this model, archaeologists and engineers could gain a better understanding of the potential 
impacts from specific projects and project alternatives within the East Side Access study area. 
This goal is very much in-line with the practice of CRM and does not attempt to incorporate 
research as a primary goal.  
 
Hart’s study area includes 25-square miles within Erie County, Pennsylvania, and incorporates 
the Lake Erie Plain and Glacial Escarpment physiographic sections. Separate models were 
created for each of the two physiographic sections. The first step of the modeling process was 
data collection. Over 600 archaeological site locations were collected from five counties in three 
states: New York, Pennsylvania, and Ohio. This data collection was based on transcribing site 
locations by hand onto 7.5-minute series USGS quadrangle maps. First, sites beyond the Lake 
Erie Plain and Glacial Escarpment were eliminated; secondly, sites were eliminated if they: 1) 
lacked verifiable location data; 2) were located based on informant interviews and not field 
verified; 3) the recorder was uncertain; or 4) there were differences between the plotted location 
and UTM coordinates that could not be resolved. Finally, the site sample was further trimmed in 
an attempt to reduce survey bias. This was accomplished through the use of a 1,000 x 1,000-m 
square grid that was placed over the entire project area. For any cell that contained more than one 
archaeology site, all but one of the sites was eliminated from the sample. Hart’s manner for 
choosing the site to retain from each grid cell is not discussed. This procedure was done for sites 
within both physiographic sections, with the resulting sample sizes of 103 prehistoric sites in the 
Lake Erie Plain and 32 prehistoric sites in the Glacial Escarpment. Later, Hart revises the 
number of sites within the Lake Erie Plain to 94 due to measurement errors.  
 
The 1,000-m grid was also used to derive the background values from the two physiographic 
sections. Within the Lake Erie Plain, background values were derived from every other cell in a 
checkerboard fashion. Cells were excluded from the background sample if they contained 
recorded archaeological sites or were heavily disturbed or developed. This resulted in a total of 
404 background measure for the Lake Erie Plain. A similar method was followed for the Glacial 
Escarpment, but only half of the background values were collected to bring the total of 118 cells 
more in line with the smaller sample of known sites, as compared to the Lake Erie Plain. As is 
the case with sites, Hart revises the number of background cells within the Lake Erie Plain to 346 
due to measurement errors.  
 
The variables listed in Table 18 were manually measured for site and background cells from 
USGS 7.5-minute series quadrangle maps and USDA soils maps. Distance variables were 
measured from the center of each cell, presence/absence was taken from anywhere within the 
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cell, and soil variables were assigned to the class that covered the largest portion of each cell. All 
of the variable measurement and spatial UTM coordinates from site and background cells were 
recorded and then entered into a FileMaker Pro database for statistical analysis within the 
SYSTAT program.  
 
The statistical analysis of site and background variable measures began with generating 
descriptive statistics including mean, median, standard deviation, and coefficients of variation for 
each variable for sites and background values. Secondly, the Kolmogorov-Smirnov (K-S) test 
was used to compare the Cumulative Distribution Function (CDF) of each variable for sites 
against background values. The null hypothesis of this test is that each CDF was drawn from the 
same population. To reject this null hypothesis is to suggest that distribution of site cells can be 
discriminated from background cells for the particular variable. To accept the null hypothesis is 
to suggest that the variable being tested cannot be used to distinguish site locations from the 
background. For the Lake Erie Plain, the K-S test resulted in the variables of distance to nearest 
stream confluence (p = 0.621) and woodland suitability (p = 0.060) being rejected at the a = 
0.050 level. For the Glacial Escarpment, the K-S test resulted in six of the variables being 
rejected at a = 0.050, the variables were, elevation above the nearest stream (p = 0.639), 
elevation above nearest stream confluence (p = 0.313), topographical relief (p = 0.621), slope (p 
= 0.313), depth to water (p = 0.066), and woodland suitability (p = 0.350).  
 
Using the variables that demonstrated a significant difference from background values, a 
stepwise logistic regression was conducted for both the Lake Erie Plain and Glacial Escarpment 
study areas. Within this method, the stepwise procedure begins the regression with all of the 
variables proved to it and then prunes variables until it finds the combination of variables that 
create the best fit model. In the case of the Lake Erie Plain study area, the five variables listed in 
Table 19 offered the best fit. The parameter estimates listed in this table show the net change 
expected in site sensitivity with a unit change in that variable. The positive estimates show 
variables that increase site sensitivity with increases in the variable; the negative variables 
decrease site sensitivity as they increase. For example, site sensitivity decreases as the distance 
from water increases.  
 
In concert, these estimates show that higher sensitivity is found on areas that are relatively level, 
well-drained, and near a stream or confluence, but at a higher elevation above the stream or 
confluence. The model significance is demonstrated by p values of <0.05 for each of the 
variables, and an overall chi-squared result of p < 0.001. The null hypothesis of the chi-squared 
test states that there is no effect of the independent variables, taken together, on the dependent 
variable; this hypothesis is rejected. Table 20 shows the variables selected by the stepwise 
procedure for the Glacial Escarpment study area model. The parameter estimates describe a high 
sensitivity of areas located near low-order streams and confluence, on relatively level ground, 
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and within well-drained soils. Each of the variables is significant at p < 0.001, and the overall 
model significance is p < 0.001.  
 

Table 19 - Regression Results from Lake Erie Plain Model, Hart (1994) 

Variable 
Estimate 

Standard 
Error T-Statistic 

Constant -4.44733 (𝛼) 0.8972 -4.9566 
Distance to nearest stream (𝑥1𝑖) -0.00355 ( 𝛽1) 0.00828 -4.29 
Elevation above nearest stream (𝑥2𝑖) 0.01133 (𝛽2) 0.00571 1.9831 
Elevation above nearest stream confluence (𝑥3𝑖) 0.00996 ( 𝛽3) 0.00437 2.2794 
Slope (percent grade) (𝑥4𝑖) -0.1423 ( 𝛽4) 0.00473 -3.0084 
Soil drainage class (𝑥5𝑖) 0.94386 ( 𝛽5) 0.14792 6.4809 
Model Significance: χ2 = 115.726, df = 5, p < 0.001 

   All variables are significant at the a= 0.05 level 
    

 

Table 20 - Regression Results from Glacial Escarpment model, Hart (1994) 

Variable 
Estimate 

Standard 
Error T-Statistic 

Constant  0.69389 (𝛼) 1.21901 0.56923 
Order of nearest stream (𝑥1𝑖) -0.61439 ( 𝛽1) 0.2497 -2.4605 
Distance to nearest stream confluence (𝑥2𝑖) -0.00505 ( 𝛽2) 0.00124 -4.0799 
Slope (percent grade) (𝑥3𝑖) -0.21611 (𝛽3) 0.08083 -2.6738 
Soil drainage class (𝑥4𝑖) 0.90722 ( 𝛽4) 0.32221 2.8157 
Model Significance: χ2 = 58.355, df = 4, p < 0.001 

   All variables are significant at the a = 0.05 level 
    

Prior to the application of this model, a GIS was used to grid the study areas into 100-m square 
cells, resulting in 8,000 cells. The process of applying the regression outcomes to each of the 
8,000 cells began with the measurement of each variable within each cell. This was 
accomplished with the use of the GIS. With each of these measurements, the logistic regression 
formula was applied by substituting each parameter estimate and variable measurement, as 
symbolized in the tables above, into the logistic regression equation: 
  

 (𝑦 =  1/(1 + 𝐸𝑥𝑝(𝛼 +  𝛽1𝑥1𝑖 +   𝛽2𝑥2𝑖 + ⋯+  𝛽𝑝𝑥𝑝𝑖)) 
 
From this equation and the data in Table 19 and Table 20, and a recreation of the variables 
within a GIS, Hart’s models could be rerun to achieve very similar, if not identical, results. 
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Alternatively, new models could be run on a different mix of variables and compared to the 
results above to judge model fit. 
 
The range of sensitivity probabilities that result from this process will be contained within a 
range of 0 to 1.0. The lowest end of the spectrum is where the model predicts a very low 
probability of that cell to contain the mix of variables that best predict site presence. The highest 
end of the scale is where the model predicts a high probability for the presence of the 
environmental features that often signify site presence. The shape of the distribution of 
sensitivity values between zero and one will depend on the environmental, site sample, variables, 
and fit of the model. The process of segmenting this sensitivity distribution is one where the 
modeler has the ability to balance the model towards either efficiency or completeness. The 
resulting gain statistic is directly affected by the choice of cut-points for the site-likely and site-
unlikely classes. The modeler may chose at this point to lower the gain statistic in trade for a 
more accurate model; conversely, they may choose to maximize the gain in favor of a more 
precise model. This choice depends on the model maker and the model goals. 
 
Hart chose to use the cross-over method to choose the cut-point between site-likely and site-
unlikely classes. This method plots the distribution of sensitivity probabilities (0 to 1) on the x-
axis and the percent correct predictions (0 to 1) on the y-axis. These two curves generally mirror 
each other and can be used to understand the percentage of correct predictions that can be 
achieved at a given cut-point. Hart follows the convention of Warren (1990:105) by selecting the 
point at which the two opposing plot lines cross as representing the optimum point where 
efficiency and completeness are balanced. Choosing a cut-point to the right of the cross-over 
point balances the model towards completeness, as increasingly site-likely area is incorporated to 
gain additional sites. Choosing a cut-point to the left of the cross-over balances the model toward 
efficiency, with a decrease in site-likely area retaining correct predictions for the higher 
probability areas. This generalization depends on the shape of the distributions and the choice of 
balance depends on the intention of the model.  
 
Based on the cross-over plot, Hart chose a cut-off point of 0.25 for both the Lake Erie Plain and 
Glacial Escarpment models. At this cut-off point, the Lake Erie Plain model correctly classified 
76% of the site cells and the Glacial Escarpment model correctly classified 81% of the site cells. 
To segment the model into high, moderate, and low sensitivity zones, Hart used the 0.25 cut-
point as the boundary between the high and moderate classes. A cut-point of 0.11 was arbitrarily 
chosen to be the cut-point between moderate and low sensitivity. Finally, Hart produced a map 
from the GIS that contained the East Side Access project alternative routes overlain on the study 
area classified into 100-m square cells classified into high, moderate, and low sensitivity. This 
map was used in the planning of the East Side Access project. 
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Model Classification, Efficacy, and Performance:  
Overall, Hart’s models for the sensitivity of site locations within the Lake Erie Plain and Glacial 
Escarpment physiographic sections of the East Side Access project area perform rather well in 
terms of classification and efficiency. However, these models were only tested internally with 
the site locations that were used to train the model. Using the same sites that created the model to 
test the model will invariably lead to biased and likely overly optimistic assessments of model 
performance. Ideally, these models would be tested with site locations independent of the model. 
However, without such a test, this assessment is based on the interval results Hart provided 
(1994:12).  
 
At the 0.25 cut-off point, the Lake Erie Plain model correctly classifies 69 of the 94 site present 
cells for a success of 73% (Table 21 and Table 22). The false-positive classification error of 23% 
is relatively balanced with a false-negative of 27%. However, a 27% false negative is on the 
higher side of a decent model. The types and location of sites within the false-negative cells 
would need to be better understood to know if this error was acceptable or not. The 0.25 cut-
point of the model correctly classifies 73% of the site cells within 34% of the model area for a 
gain of Kg = 0.536. The even balance of classification results and the overall gain suggest a 
pretty efficient model.  
 

Table 21 - Model Class Assignments from Lake Erie Plain Model, Hart (1994) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  

Present 
(M) Absent (M') Total % 

Site 
Observation 

Present 
(S) 

0.157 (69) 0.057 (25) 94 21.4% 

Absent 
(S') 

0.184 (81) 0.602 (265) 346 78.6% 

 
Total 150 290 440 1 

 
% 34.1% 65.9% 1 
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Table 22 - Model Classification Results from Lake Erie Plain Model, Hart (1994) 

 
Conditional Probabilities 

  
Model Prediction 

 

  

Present 
(M) 

Absent 
(M') Total 

Site 
Observation 

Present (S) 
0.73 0.27 1.0 

Absent (S') 
0.23 0.77 1.0 

 
     

 
At a cut-off point of 0.25, the Glacial Escarpment model correctly classifies 26 of the 32 site 
present cells for a success of 81% (Table 23 and Table 24). The false-positive and false-negative 
rates are both at 19%, attesting to the even balance of this model. With 81% of the sites being 
correctly classified within 32% of the site-likely cells, the model achieves a gain of Kg = 0.606. 
This efficient model performs better than the Lake Eire Plain model, both in classification error 
and overall gain.  
 

Table 23 - Model Class Assignments from Glacial Escarpment Model, Hart (1994) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  

Present 
(M) 

Absent 
(M') Total % 

Site 
Observation 

Present 
(S) 

0.173 (26) 0.04 (6) 32 21.3% 

Absent 
(S') 

0.147 (22) 0.64 (96) 118 78.7% 

 
Total 48 102 150 1 

 
% 32.0% 68.0% 1 

  
Table 24 - Model Classification Results from Glacial Escarpment Model, Hart (1994) 

 
Conditional Probabilities 

  
Model Prediction 

 

  

Present 
(M) 

Absent 
(M') Total 

Site 
Observation 

Present (S) 
0.81 0.19 1.0 

Absent (S') 
0.19 0.81 1.0 
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In terms of this model’s efficacy, the results of the classifications and gains presented above 
suggest that these models would fulfill their goals as a planning tool. As part of an EIS and 
alternatives planning, these models would very likely be able to give planners and engineers a 
good idea of portions of the project area that are more likely to contain prehistoric archaeological 
sites, relative to other portions of the project area. Clearly these models did not correctly classify 
all of the known sites, as no model will, but they did classify a large portion of the sites without 
compromising with an overly large survey area or an overly high false-negative rate. Combined 
with the clear presentation of pertinent data to allow for this model to be understood and 
repeated, these qualities illustrate well performing and successful models.  
 
Assessment: 
While the positive assessment of the models classification, efficacy, and performance are based 
on the results of internal testing alone, it is not unlikely that these models would also test well 
with an independent data set. Of course, only those tests would confirm their ability to identify 
areas likely to contain archaeological sites. Given the clear and concise documentation of this 
short report, these models would be recreated and tested with new data gathered in the nearly 20 
years since their creation.  
 
Hart’s methods and presentation are very firmly based on the papers published in Judge and 
Sebastian (1988). Hart followed many of the conventions that were made popular during the 
initial development of computer-based statistical APMs in the United States. Further, where 
many authors paid lip service to these theories and methods of these foundational publications, 
few were able to obtain the resources necessary to implement these methods according to best-
practices of the time. Hart countered this trend by utilizing GIS and statistical analysis software 
to perform tests and present the appropriate data. However, for Hart’s adherence to the best-
practices of the time, it is interesting that he did not attempt to test his models with an 
independent site sample, nor did he report his results in terms of the Kvamme gain statistic. Both 
of these techniques and their benefits would most likely have been quite familiar to him, given 
his understanding of the Kvamme and Warren’s publications. Perhaps the site sample or project 
funding did not allow for these steps to be completed, but it would have been a beneficial use of 
time and added some confidence to these seemingly well-executed and well-performing models.  
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Duncan, Richard B., Thomas C. East, and Kristen A. Beckman 
1996 Allegheny and Washington Counties Mon/ Fayette Transportation Project 

Interstate 70 to Route 51. Evaluation of Crooked Creek Predictive Model. E.R. 
1987-1002-042-A02 & A03. Prepared for; Pennsylvania Turnpike Commission, 
Harrisburg, Pennsylvania. Skelly and Loy, Inc., Monroeville, Pennsylvania. 

 
Duncan, Richard B., and Brian F. Schilling 
1999a Fayette and Washington Counties Mon/Fayette Expressway Project Uniontown to 

Brownsville, Archaeological Predictive Model Development. E.R. 1987-1002-042-
B03. Prepared for; Pennsylvania Turnpike Commission, Harrisburg, Pennsylvania. 
Skelly and Loy, Inc., Monroeville, Pennsylvania.  

 
Duncan, Richard B., and Brian F. Schilling 
1999b Northumberland, Snyder and Union Counties. Central Susquehanna Valley 

Transportation Project. S.R. 0015, Section 088. Archaeological Predictive Model. 
E.R.1997-0475-042-Q. Prepared for; Pennsylvania Department of Transportation, 
Engineering District 3-0. Harrisburg, Pennsylvania. Skelly and Loy, Inc., 
Monroeville, Pennsylvania.  

 
Region:  
Allegheny, Washington, Fayette, Northumberland, Snyder, and Union Counties, Pennsylvania.  
 
Significance: 
This evaluation includes three models Duncan created. These three reports chronicle the 
evolution of a methodology that Duncan created for the Mon/Fayette and Central Susquehanna 
Valley transportation (CSVT) projects. These models are significant principally due to the wide 
area of application; taken together, they are the most ambitious modeling effort thus far in the 
Commonwealth. The secondary significance lies in Duncan’s creation and consideration of a 
very broad list of environmental variables. The method employed in these models is not 
particularly novel or rigorous, but is noteworthy for the scale at which it is applied.  
 
Model Type:  
Correlative with background testing and elements of regression 
 
Variables: 
The models Duncan created considered a very large list of environmental variables. These 
variables were for the most part based on the primary data sets of elevation, hydrology, soils, and 
geology. Duncan goes to lengths to calculate many different secondary variables based on these 
and then calculates a number of different permutations for each secondary variable.  
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For the Mon/Fayette models, Duncan chose to incorporate a total of 20 variables (Table 25). 
These variables were selected from a list totaling 72 potential variables. As stated, the 72 
variables are comprised of a number of permutations for each variable and not 72 unique 
variables. For the CSVT model, Duncan selected a list of 17 variables from a total body of 59 
variables (Table 26). The difference between the body of 59 and 72 variables from the two 
projects is minor. Many of the differences are expanding upon and slightly changing existing 
variables and permutations. The two lists of variables below are also quite similar. Roughly 
three-quarters of each list are the same variables. The difference includes more hydrologic 
variables and a proximity to chert sources in the CSVT model, and more topographic and upland 
focused variables in the Mon/Fayette model.  
 
Duncan selected the variables for each model through a variety of means. Variables were 
selected based on expert judgment and regional studies, and then dropped or reweighted based 
on internal testing, correlation testing, and the results from a logistic regression. The reports 
describing these methods are not entirely clear on what specific variables were selected for each 
method, but do provide the below tables documenting the variables considered for the model.  
 

Table 25 - Variables in Mon/Fayette Models, Duncan et al. (1996), Duncan and Schilling (1999a) 

Variable (Mon/Fayette) 
Agricultural soil capability ranking 
Cost distance 
 to all streams 
Cost distance to confluence along perennial streams, major tributaries, and the rivers 
Cost distance to confluence along the river 
Cost distance to drainage divides 
Cost distance to historically documented trails 
Cost distance to major tributary 
Cost distance to nearest river body 
Cost distance to topographic saddle 
Cost distance to localized peaks 
Cost distance to vantage points 
Distance to springs 
High potential soils 
Openland wildlife soil suitability 
Soil depth to bedrock rank 
Soil drainage character 
Soil fertility: corn productivity 
Solar insolation gain 
Topographic relief within 900m neighborhood 
Topographic slope 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 1: LITERATURE REVIEW 

 

3 • MODEL EVALUATION 
64 

Table 26 - Variables in CSVT Model, Duncan and Schilling (1999b) 

Variable (Central Susquehanna) 
Agricultural soil capability ranking 
Cost distance to all streams 
Cost distance to chert resources 
Cost distance to confluence along perennial streams, major tributaries, and the rivers 
Cost distance to headwater confluence 
Cost distance to historically documented trails 
Cost distance to major tributary 
Cost distance to nearest river body 
Cost distance to topographic saddle 
Cost distance to wetlands 
Flood frequency and hydrologic group 
High potential soils 
Soil depth to bedrock rank 
Soil drainage character 
Soil fertility: corn productivity 
Solar insolation gain 
Topographic slope 

 
Model Methodology:  
The goal of the models constructed for these studies each were designed to assist in the design, 
alternative selections, and testing of transportation projects. As stated by Duncan and Schilling: 
 

The results of the predictive model for prehistoric archaeological site potential will be 
utilized within the proposed highway alternatives selection process to minimize the 
impacts of the project on significant archaeological resources and to reduce the cost and 
work effort required for subsequent archaeological testing and/or mitigation within the 
selected preferred alternatives [Duncan and Schilling 1999a]. 

 
As with other models evaluated in this study, these models were created primarily for a planning 
purpose, then often reused for a scoping and field methods purpose. Duncan is perhaps the first 
author in this evaluation to impart the added goal of cost-savings benefit. This benefit is 
somewhat implied in most models, as they are rarely of pure research interest; however, few—if 
any—other authors admit this as an explicit goal. As stated by Duncan and Schilling: 
 

The chief reasons to employ predictive modeling in archaeology today are cost 
effectiveness and planning utility. While environmental and preservation regulations 
mandate that state and federal agencies locate and preserve cultural resources, sufficient 
funding is not available to completely inventory all such resources in all mandated areas. 
In order to be cost effective, predictive models must potentially be able to project likely 
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cultural resource distributions across an area based on a sample of that region or on 
fundamental notions of human behavior (Kohler and Parker 1986) [Duncan and Schilling 
1999b:21]. 

 
The methodology of Duncan’s models evolves across these reports, but is summed up most 
clearly by Duncan and Schilling’s (1999b) CSVT model. The following discussion of methods 
will primarily refer to the CSVT project, but will reference the Mon/Fayette model where the 
two approaches depart. The overall model type employed here is a judgmentally weighted sum 
model with variable selection and informed through site and background correlation testing. The 
inclusion of a stepwise logistic regression step appears to be done to help inform the weighting 
scheme, but its specific contribution is unclear. The general steps used in these models are as 
follows: 1) collect and vet PASS site data; 2) collect primary variable data, create secondary 
variable raster layers, and transform variables into common scale; 3) use qualitative and 
statistical means to test the correlation of sites and background data for each variable; 4) create 
an initial weighted model based on variables with strong correlation; 5) conduct stepwise logistic 
regression to inform weighting scheme; 6) revise variable selection and weighting scheme based 
on internal testing; and 7) produce revised model and test with external or independent data. This 
evaluation will summarize this process.  
 
The first step in these models was the collection of archaeological site locations. Prehistoric sites 
from within the study area were collected from the PASS files, as well as CRM reports, 
published resources, and collector interviews. Paper and map based site information was 
digitized into a GIS and sites with conflicting information or lacking accurate spatial locations 
were excluded. Additionally, the site types of rock shelters, petroglyphs, and isolated finds were 
dropped from consideration. Information such as a site’s slope, distance to water, soils, and other 
environmental information recorded in the PASS files was omitted in favor of recalculating these 
measures from the GIS. Duncan then tabulated the site data by type, location, temporal 
affiliation, and by some environmental variables in order to better understand the variability 
within the data. The total site sample was split into 70% to 30% portions for the exclusive 
purposes of model creation and internal model validation, respectively.  
 
Following this data collection, the primary environmental data sets are created. These include 
digital elevation models (DEM), hydrology, roads, soils, and landuse. Where not available 
digitally, these variables were digitized into the GIS. From these, the 59 variables for the CSVT 
model and 72 variables of the Mon/Fayette model were generated. The raster GIS layers that 
represent these variables had a resolution of 30 x 30 m, commensurate with the original DEM 
data. The many different permutations of “cost distance” variables utilized by Duncan appear to 
be all cost allocated by slope. However, this detail is not explained within the reports. 
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At this point, the models are split into two separate models to represent upland and lowland 
areas. This is done due to the significant difference in environments and site locations between 
the uplands and lowlands. From this point on, all of the steps are repeated for each of the two 
modeled areas. 
 
The statistical analysis of the potential variables began with applying the Kolmogorov-Smirnov 
two-sample (K-S) test to compare the distributions of environmental measures for the site sample 
versus a non-site sample. The site sample is represented by the 70% of the total site sample 
randomly selected and intended only for model creation. The non-site sample is a random sample 
of background grid cells, of roughly the same area as the site sample, that represent areas where 
no known sites exist. The intention of the non-sites is to represent the background environment 
and provide a basis for testing which variables are more strongly correlated to site locations. This 
follows the logic that settlement locations are non-random and can be differentiated from the 
background environmental data based on the model variables. If the distribution of measurement 
for a variable for site locations is significantly different from the distribution of the same 
measure for non-sites, the K-S test will result in a large distance value (D) coupled with a small 
p-value. In this case, the variable is considered able to discriminate site location. 
 
Duncan conducted the K-S test for each of the variables and sorted the list of variables by the D 
value to gain a relative view of variables scaled from the most preferential to the least. In order 
to confirm these results and gain a better understanding of the internal variation within a 
variable, Duncan created histograms of both site and non-site values for each variable to visually 
compare the two. This allows for the understanding of which classes within each variable are 
more discriminant than others. This is an important piece of information when employing the 
weighted sum method. From these results, Duncan compared the significant variables to the 
findings of previous regional surveys and settlement analyses. The final list of variables used in 
each model was selected by a combination of the statistical tests and expert judgment.  
 
From the selected variables, an initial model was constructed. The first step in creating this initial 
model was the transformation of the variable measures into a standardized scale ranging from 0 
to 100. This involved rescaling or inverting variables so that the values most associated with site 
locations were transformed to 100, and the least associated values to zero. This seemingly very 
important step in the process is not well detailed by Duncan, but summed up in the statement, 
“The transformation process was carefully performed using simple mathematical formulas, and 
the results were inspected for aberrant or unintentional changes in data relations” (Duncan and 
Schilling 1999b:44). From these new values, the variables were classified and weighted based on 
the relative significance (D values), site distribution within classes, expert judgment, and the aid 
of a logistic regression.  
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The stepwise logistic regression analysis was undertaken to support or refute the selection and 
validity of variables. The logic of this step is that if the blend of variables selected by the 
stepwise logistic regression and the significance of the variables and model overall are similar to 
the understanding gained from the previous steps, then the model is supported. On the other 
hand, if the results of the regression show that the selected model or significance of certain 
variables differed from the previous understanding, the model may require revision. While this 
step is not well documented in any of Duncan’s reports, he states in Duncan and Schilling 
(1999b:45) that:  
 

Although the results of the logistic regression analysis supported the use of the variables 
selected for the model, the weights created by the regression analysis result from a 
complicated interaction of the variables within the analysis and could not be directly 
applied to the algebraic model formula. The weights were used as a guide to adjust the 
correlative model… 

 
From this it is assumed that the results of the regression acted as a guide, but did not contribute 
directly to the resulting model. 
 
Following the regression and any further revisions to the weighting scheme, the initial upland 
and lowland models were finalized by summing the individual weights for each variable within 
each 30 x 30-m cell in the project area GIS raster layer. Higher sensitivity is signified by a higher 
value of the summed weights. Duncan does not disclose the weights of variables or whether the 
weights were only for individual classes or products of relative and factor weights for any of the 
models. For model testing and application, the upland and lowland models were combined into a 
single continuous sensitivity layer. 
 
The initial model was validated internally with the site sample used to create it. Based on the 
results of this test, the model was refined to create the final model. The final model was then 
tested against the reserved test site sample to gauge its performance on independent data. With 
satisfactory performance, this model was then applied to the study area and utilized in the 
planning process. 
 
Generally, the approach Duncan documented is similar to many of the judgmentally weighted 
and correlative models evaluated thus far. Where these models differ are in the complete 
implementation within GIS, which allowed for the creation of many environmental variables, 
multiple rounds of testing, and application across wide areas. Methodologically, the use of 
statistical testing of correlation backed up by visual comparison of histograms and model 
validation through stepwise logistic regression is a wide ranging compilation of techniques that 
are more often employed individually. Duncan’s use of internal validation, revision, external 
testing with a set-aside sample, further revision, and the production of a final model follows best 
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practices. Adherence to this cycle of testing and revision is all but absent in the remaining 
models of this evaluation study.  
 
Model Classification, Efficacy, and Performance:  
The three models evaluated here—Duncan et al. 1996 and Duncan and Schilling 1999a for the 
Mon/Fayette models, and Duncan and Schilling 1999b for the CSVT model—will be discussed 
separately, but are all the result of the same basic methods described above. All in all, the model 
results appear to be good and consistent with the better performing models evaluated here.  
 
Reported in Duncan et al. (1996), the model for the Allegheny to Washington Counties section 
of the Mon/Fayette project, was the first of the three models to utilize these methods. Duncan 
used the cross-over plot method to pick the optimal cut-point for which to establish balanced 
site-likely and site-unlikely areas. In this model, a cut-point of 245 was used. The results of the 
internal model are depicted in Table 27 and Table 28. This model achieved a gain of Kg = 0.588, 
with a correct classification of 82% of the site cells within 33.7% of the study area. The 
erroneous classifications account for 18% of site cells and 32% of the non-site cells. The results 
of the initial model depict a good correct classification and a good balance of misclassifications.  
 
Table 29 and Table 30 depict the results of the revised model from Duncan et al. 1996 as tested 
on independent data. The gain of this model is Kg = 0.593, with a correct classification of 83% of 
the site cells within 33.8% of the study area. The erroneous classifications account for 17% of 
site cells and 33% of the non-site cells. The cut-point for this model was set at 220, slightly 
below the initial model. This adjustment in cut-point may account for the slight difference 
between these two models. The 1% increase in correct site classification is offset by a 1% 
increase in false-positive classification. All the change between the two models is incremental; 
the end result being an efficient model that would serve well as a planning tool. 
 
The second model using this method is for the Fayette and Washington Counties section of the 
Mon/Fayette project (Duncan and Schilling 1999a). In this model, a cut-point of 245 was used. 
The results of the internal model are depicted in Table 31 and Table 32. This model achieved a 
gain of Kg = 0.532, with a correct classification of 75% of the site cells within 34.9% of the study 
area. The erroneous classifications account for 25% of site cells and 27% of the non-site cells. 
This initial model has a moderate correct classification of site cells, but suffers from a relatively 
poor false-negative percent. The lower gain reflects the broader site-likely area covered by this 
model. 
 
The revised model (Table 33 and Table 34) tested with external data had a cut-point of 199. This 
model achieved a gain of Kg = 0.631, with a correct classification of 82% of the site cells within 
30.1% of the study area. The erroneous classifications account for 18% of site cells and 19% of 
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the non-site cells. This model is a rather significant improvement over the initial model. Overall, 
this model has very favorable results and would be seemingly quite effective as a planning tool.  
The final model evaluated under this methodology is the CSVT model report in Duncan and 
Schilling (1999b). In this model, a cut-point of 120 was used. The results of the internal model 
are depicted in Table 35 and Table 36. This model achieved a gain of Kg = 0.308, with a correct 
classification of 82% of the site cells within 56.8% of the study area. The erroneous 
classifications account for 18% of site cells and 22% of the non-site cells. The low gain statistic 
is resultant from a large site-likely area; however, the low false-positive suggests that distribution 
of site and non-site cells may be affecting these results in a different way than the previous 
models. More information would be required to investigate this.  
 
The revised model (Table 37 and Table 38) tested with external data had a cut-point of 122. This 
model achieved a gain of Kg = 0.382, with a correct classification of 82% of the site cells within 
50.7% of the study area. The erroneous classifications account for 18% of site cells and 20% of 
the non-site cells. This model is an improvement over the initial model. The revised model was 
able to reduce the site-likely area without reducing the number correct classification of site cells 
or adding to the misclassifications. The revised model is an improvement over the initial model, 
but still includes a majority of the study area as likely to contain sites; the low gain is a result of 
this. With nearly the same methodology between the Mon/Fayette and CSVT models, the 
difference in results may be attributed to different site distributions, varying environments, and 
additional variables that contribute to site selection. While the CSVT model results are slanted 
heavily towards completeness with little efficiency, a model with an 82% correct classification 
and 18% false-negative is still likely a serviceable model for planning purposes. 
  

Table 27 - Internal Model Class Assignments for Duncan et al. (1996) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  
Present (M) Absent (M') Total % 

Site 
Observation 

Present (S) 
0.035 (72) 0.008 (16) 88 4.2% 

Absent (S') 
0.303 (630) 0.655 

(1364) 1994 95.8% 

 
Total 702 1380 2082 1 

 
% 33.7% 66.3% 1 
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Table 28 - Internal Model Classification Results for Duncan et al. (1996) 

 
Conditional Probabilities 

  
Model Prediction 

 
  

Present (M) Absent (M') Total 

Site 
Observation 

Present (S) 
0.82 0.18 1.0 

Absent (S') 
0.32 0.68 1.0 

 
 

Table 29 - External Model Class Assignments from Duncan et al. (1996) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  
Present (M) Absent (M') Total % 

Site 
Observation 

Present (S) 
0.008 (44) 0.002 (9) 53 1.0% 

Absent (S') 
0.33 (1735) 0.66 (3474) 5209 99.0% 

 
Total 1779 3483 5262 1 

 
% 33.8% 66.2% 1 

  
 

Table 30 - External Model Classification Results from Duncan et al. (1996) 

 
Conditional Probabilities 

  
Model Prediction 

 
  

Present (M) Absent (M') Total 

Site 
Observation 

Present (S) 
0.83 0.17 1.0 

Absent (S') 
0.33 0.67 1.0 
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Table 31 - Internal Model Class Assignments for Duncan and Schilling (1999a) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  
Present (M) Absent (M') Total % 

Site 
Observation 

Present (S) 
0.131 (65) 0.044 (22) 87 17.5% 

Absent (S') 
0.219 (109) 0.606 (302) 411 82.5% 

 
Total 174 324 498 1 

 
% 34.9% 65.1% 1 

  
 

Table 32 - Internal Model Classification Results from Duncan and Schilling (1999a) 

 
Conditional Probabilities 

  
Model Prediction 

 
  

Present (M) Absent (M') Total 

Site 
Observation 

Present (S) 
0.75 0.25 1.0 

Absent (S') 
0.27 0.73 1.0 

 
 

Table 33 - External Model Class Assignments from Duncan and Schilling (1999a) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  
Present (M) Absent (M') Total % 

Site 
Observation 

Present (S) 
0.143 (71) 0.032 (16) 87 17.5% 

Absent (S') 
0.159 (79) 0.667 (332) 411 82.5% 

 
Total 150 348 498 1 

 
% 30.1% 69.9% 1 
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Table 34 - External Model Classification Results from Duncan and Schilling (1999a) 

 
Conditional Probabilities 

  
Model Prediction 

 
  

Present (M) Absent (M') Total 

Site 
Observation 

Present (S) 
0.82 0.18 1.0 

Absent (S') 
0.19 0.81 1.0 

 
 

 
Table 35 - Internal Model Class Assignments from Duncan and Schilling (1999b) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  
Present (M) Absent (M') Total % 

Site 
Observation 

Present (S) 
0.477 (4603) 0.104 (1005) 5608 58.2% 

Absent (S') 
0.091 (874) 0.328 (3160) 4034 41.8% 

 
Total 5477 4165 9642 1 

 
% 56.8% 43.2% 1 

  
 

Table 36 - Internal Model Classification Results from Duncan and Schilling (1999b) 

 
Conditional Probabilities 

  
Model Prediction 

 
  

Present (M) Absent (M') Total 

Site 
Observation 

Present (S) 
0.82 0.18 1.0 

Absent (S') 
0.22 0.78 1.0 
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Table 37 - External Model Class Assignments from Duncan and Schilling (1999b) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  
Present (M) Absent (M') Total % 

Site 
Observation 

Present (S) 
0.406 (3239) 0.088 (706) 3945 49.4% 

Absent (S') 
0.101 (808) 0.404 

(3226) 4034 50.6% 

 
Total 4047 3932 7979 1 

 
% 50.7% 49.3% 1 

  
 

Table 38 - External Model Classification Results from Duncan and Schilling (1999b) 

 
Conditional Probabilities 

  
Model Prediction 

 
  

Present (M) Absent (M') Total 

Site 
Observation 

Present (S) 
0.82 0.18 1.0 

Absent (S') 
0.20 0.80 1.0 

 
 
 
Assessment: 
The model building process Duncan conducted for the Mon/Fayette and CSVT projects is an 
interesting mix of qualitative and quantitative methods that appear to have effective results. The 
only downside to the approach outlined in these reports is that very little information is offered in 
terms of judgmental decisions for weighting and class selection. Further, many of the more 
technical steps are glossed over and not described in any detail. The methodological approach 
described above, in some cases, required teasing of details from all three reports to understand 
the approach. By the successful results reported for most of these models, the lack of technical 
detail does not seem to represent a lack of understanding in the techniques.  
 
As stated in the results evaluation, these models provide good examples of how the gain and 
associated statistics are very useful in comparing different iterations of a model with the same 
data. This is particularly true for the weighted sum model types. For regression models, other 
metrics generated through the estimation of parameter values provide a basis for model 
comparison. The steady increase in gain between Duncan’s internal testing and revised 
externally tested models is a very positive sign, especially considering that the internal testing is 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 1: LITERATURE REVIEW 

 

3 • MODEL EVALUATION 
74 

likely to bias towards positive results. Further, these models are a good example of how the same 
methods applied to a different area and data set can give quite different results. The consistent 
results of the Mon/Fayette models are contrasted against the much less precise results of the 
CSVT model. Many factors outside of the model methods may have led to this divergence. 
These may include site density, physiography, and site types, as well as simple differences in the 
random selection of site test samples and non-site sample. Without recycling a model through 
numerous random selections of sites and non-sites, the volatility of the model is unknown. Poor 
results may be more an effect of a non-representative sample or site sample inhomogeneity than 
variable selection, weighting, or methods. This effect could also lead to a very good model run 
based on non-representative data. Testing the volatility of a model lends a greater degree of 
confidence in its results.  
 
While the documentation of the methodology Duncan utilized is somewhat unclear and devoid of 
the details necessary to fully understand the testing results or to recreate the models, the models 
appear valid. In terms of testing, the models improved each time after being tested with internal 
data, revised, and again tested with external data. Certainly for the Mon/Fayette models, and to a 
lesser degree for the CSVT model, these results suggest a high degree of utility in the planning 
and route alterative selection process. For field scoping and survey, the Mon/Fayette models 
would be very applicable, but the CSVT would suffer from such a large site-likely area. 
Considering that the goals of these projects were geared more towards planning, this 
methodology produces effective models that perform well.  
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Katz, Gregory M., John P. Branigan, Paul W. Schopp, and Steven J. Biondo 
2002 S.R. 0228, Section 290 Cranberry, Adams, and Middlesex Townships, Butler 

County, Marshall, Pine, and Richland Townships, Allegheny County, Pennsylvania. 
Volume 1, E.R. 1999-6127-019-H. Prepared for; Pennsylvania Department of 
Transportation, Harrisburg, Pennsylvania. A. D. Marble & Company, 
Conshohocken, Pennsylvania.  

 
Region:  
Butler and Armstrong Counties, Pennsylvania; Pittsburgh Low Plateau Section of the 
Appalachian Plateau Physiographic Province 
 
Significance: 
The significance of this model is not in in the model itself or the methods used to achieve it, but 
instead in the fact that Katz et al. reapply earlier APM models to their study area. These older 
models offer Katz et al. a baseline for understanding performance and test out potential variables. 
Additionally, these older models can be revaluated based on the results of this reapplication on 
independent data.  
 
Model Type:  
Predominantly judgmental, with a non-statistical testing of site versus background correlation  
 
Variables: 
The variables selected for this model were based on the variables utilized in the Stewart and 
Kratzer (1989) and the Cowin (1980) model. These two models were applied to this project’s 
study area and their results were evaluated. Additionally, a visual comparison of histograms for 
site and background locations was performed for each variable. The results of the previous 
models and histogram comparison informed Katz et al. and resulted in the selection of these 
variables (Table 39). 
 

Table 39 - Variables from Katz et al. (2002) 

Variable 
Landforms (lowland flats, lowland slopes, upland flats, and upland slopes) 
Cost distance to water (cost by slope) 
Soil drainage 
Slope 
Soil Capacity 
Solar Aspect 
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Model Methodology:  
The purpose of this model was to aid in the preliminary design and constraints analysis for the 
PennDOT-funded S.R. 0228, Section 290 project in Butler and Allegheny Counties, 
Pennsylvania. This project area covered a linear distance of approximately 10.6 miles and a 
width of 6.0 miles, for a total area of approximately 23,912 acres.  
 
As stated in Katz et al. (2002:51) the, “precontact-era site probability was calculated in a 
generalized approach that relied on the role of the environment in determining probable site 
locations.” In this case, the “probabilities” were calculated through the summing of arbitrarily 
assigned weights to variable classes and factor weights to the overall variables. This 
methodology is relatively simple and repeated numerous times within the use of APM in 
Pennsylvania. In and of itself, it is not a new approach. 
 
The steps Katz et al. took before constructing their model are of the most interest here. Two 
previously published settlement analyses—Cowin’s (1980) settlement analysis entitled 
Archaeological Survey in West Central Pennsylvania, Region VII, and Stewart and Kratzer’s 
(1989) Prehistoric Site Locations on the Unglaciated Appalachian Plateau, published in 
Pennsylvania Archaeologist—were formalized by Katz el al. and applied through a GIS to this 
study area. The variables (Table 7), methods, and results of the Stewart and Kratzer model are 
discussed above, and Table 40 below shows how Katz et al. adapted them. Table 41 lists the 
variable from the Cowin (1980) settlement analysis as adapted by Katz et al.  
 
The factor weights assigned to each variable were arbitrarily assigned, but based in part on the 
model builders’ understanding of the correlation of these variables to sites and background 
values. This understanding was gained though a visual comparison of the distribution and 
histograms for the variables: landform type, soil drainage, cost-distance to water, solar aspect, 
slope percent, and soil capability. For these comparisons, a random sample of 59 (60%) of the 98 
known sites within the study area selected and compared to background values. Katz et al. 
segmented these variables into classes and assigned relative weights to each class, but the 
method to do so or actual weights are not documented in their report.  
 

Table 40 - Variables from Stewart and Kratzer (1989) Model Formalized by Katz et al. (2002). 

Variable (Stewart and Kratzer, 1989) Factor Weight 
Cost distance to water (cost by slope) 27.5% 
Slope 27.5% 
Proximity to upland areas  dropped from model 
Saddles (presence/absence) 15.0% 
Soil Drainage 15.0% 
Drainage heads (presence/absence) dropped from model 
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Table 41 - Variables from Cowin (1980) Model Formalized by Katz et al. (2002) 

Variable (Cowin, 1980) Factor Weight 
Cost distance to water (cost by slope) 25% 
Landforms (lowland flats, lowland slopes, upland flats, and upland 
slopes) 25% 
Cost distance to stream junctions (cost by slope) dropped from model 
Cost distance to Native American trails (cost by slope) 15% 
Benches and saddles (presence/absence) 15% 
Soil Drainage 10% 
Stream density - as a measure of biodiversity 10% 

 
Following the formalization of the Cowin and Stewart and Kratzer settlement analyses, Katz et 
al. classified and weighted the models. These models were put into a GIS and applied by Katz to 
his study area. The results of the Cowin and Stewart and Kratzer models were evaluated based 
on their ability to correctly classify known sites within the study area. It is not disclosed whether 
these tests were conducted with all of the 98 known sites, or only with the 60% random sample. 
Katz et al. use a score of “Model Efficiency” (M.E.) that is simply the percentage of sites located 
in the site-likely area divided by the percentage of total study area classified as site-likely; or 
(Pm|s / %Total M ) in the notation used here. As will be discussed in the following section, this 
measure is similar to the Kg, but more difficult to interpret. Based on the reapplication of these 
models, Katz et al. assigned a M.E. score of 2.0 to the Cowin model and a M.E. of 1.7 for the 
Stewart and Kratzer model. From these scores and an interpretation of the variables used to 
construct them, Katz el al. developed a list of variables and weighting scheme for a new model 
(Table 42).  
 

Table 42 - Variables from Katz et al. (2002) Model 

Variable Factor Weight 
Landforms (lowland flats, lowland slopes, upland flats, and upland slopes) 36% 
Cost distance to water (cost by slope) 18% 
Soil drainage 18% 
Slope 9% 
Soil Capacity 9% 
Solar Aspect 9% 

 
Katz et al. applied this model to their study area in the same manner as the previous models. The 
variables were classified and weighted judgmentally. The weights of the classes within each 
variable are not disclosed by the authors. Within the GIS, these weights were summed for each 
grid cell to produce a total sensitivity value. From here, Katz et al. went beyond where many 
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models stop and combined the prehistoric sensitivity model values with the historic period 
sensitivity values derived from a separate model, resulting in a combined sensitivity. An 
additional raster layer was created from aerial photographs and USDA soil maps in order to 
quantify ground disturbance. Ground disturbance values were then subtracted from the combined 
archaeological sensitivity values to derive a model that predicts locations with a heightened 
sensitivity for intact archaeological sites.  
 
In the final step, Katz et al. tested the prehistoric sensitivity model (not the combined or total 
sensitivity models) against the remaining 40% sample (n=39) of known site locations in their 
study area. This sample was set aside and not considered during the model construction or 
evaluation of variable correlations. The model was divided into five classes consisting of high, 
moderately high, moderate, moderately low, and low sensitivity. The total range of sensitivity 
values or the manner in which they were classified into these sensitivity strata was not discussed. 
According to Katz et al., 85% of test sites were found within the combined high, moderately 
high, and moderate classes which occupied 72% of the project area. The moderately low and low 
classes contained 16% of the test sites in 28% of the study area. That the site sample percentages 
add to equal 101% is inherent in the Katz et al. report. The authors state that future refinements 
to the variables within the model and the weighting scheme may lead to improving the model 
efficiency.  
 
At the end of their report, Katz et al. describe the results of a field reconnaissance of two areas of 
high archaeological sensitivity. Archaeologists identified a single prehistoric archaeological site 
in the form of a possible pre-contact mound.  
 
Model Classification, Efficacy, and Performance:  
Overall, there was a pretty significant difference between the performance of the two initial 
models based on prior settlement analysis and the final model Katz et al. created. The first two 
models performed reasonably well, albeit very biased toward completeness and with a large 
percent of false-positive classifications. On the other hand, the final model Katz et al. created 
suffered from a very high false-positive classification without the benefit of a very high true-
positive classification. In order to compare the models based on the information provided in the 
report, two assumptions are made: that each site equals one cell in the model, and that the Cowin 
and Stewart and Kratzer models were tested with the same sample of 39 points used in the final 
model test.  
 
Table 43 and Table 44 show the class assignments and classification of the model based on 
Cowin’s (1980) settlement analysis of west central Pennsylvania. Katz et al. calculated a Model 
Efficiency score of M.E. = 2.0 (more precisely, 1.94); from the information presented in the 
report, a gain of Kg = 0.484. The 13% false-negative classification error is relatively low, while 
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the more acceptable false-positive classification error is moderate at 45%. The moderate gain of 
Kg = 0.484 is being dragged down by a large site-likely model area. Overall, this model is 
balanced toward completeness, but for a planning tool would work pretty well 
 

Table 43 - Model Class Assignments from Cowin (1980) Model Formalized by Katz et al. (2002) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  
Present (M) Absent (M') Total % 

Site 
Observation 

Present 
(S) 

0.001 (34) 0 (5) 39 0.2% 

Absent 
(S') 

0.449 
(10724) 

0.55 
(13145) 23869 99.8% 

 
Total 10758 13150 23908 1 

 
% 45.0% 55.0% 1 

  
 
Table 44 - Model Classification Results from Cowin (1980) Model Formalized by Katz et al. (2002) 

 
Conditional Probabilities 

  
Model Prediction 

 

  

Present 
(M) Absent (M') Total 

Site 
Observation 

Present 
(S) 

0.87 0.13 1.0 

Absent 
(S') 

0.45 0.55 1.0 

 
     

 
Table 45 and Table 46 show the class assignments and classification of the model based on 
Stewart and Kratzer’s (1989) settlement analysis of the Unglaciated Appalachian Plateau 
physiographic section. Katz et al. calculated a Model Efficiency score of M.E. = 1.7 (more 
precisely, 1.67); from the information presented in the report, a gain of Kg = 0.402. A 3% false-
negative classification percentage is quite low. Balanced against a 58% false-positive 
classification, this model is very well balanced toward completeness. While the overall area of 
the site-likely model is high at 58.3%, the total correct site classification (97%) is very high. 
Compared to the Cowin model, these results are very similar. Essentially, a 10% increase in the 
site-likely equated to 10% more sites and reduced the false-negative by the same amount. 
Overall, like the Cowin model, this model is balanced toward completeness, but for a planning 
tool would work well. 
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Table 45 - Model Class Assignments from Stewart and Kratzer (1989) Model Formalized by Katz et 
al. (2002) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  
Present (M) Absent (M') Total % 

Site 
Observation 

Present 
(S) 

0.002 (38) 0 (1) 39 0.2% 

Absent 
(S') 

0.581 
(13897) 

0.417 
(9972) 23869 99.8% 

 
Total 13935 9973 23908 1 

 
% 58.3% 41.7% 1 

  
 

Table 46 - Model Classification Results from Stewart and Kratzer (1989) Model Formalized by 
Katz et al. (2002) 

 
Conditional Probabilities 

  
Model Prediction 

 

  

Present 
(M) Absent (M') Total 

Site 
Observation 

Present 
(S) 

0.97 0.03 1.0 

Absent 
(S') 

0.58 0.42 1.0 

 
Table 47 and Table 48 show the class assignments and classification of the model Katz et al. 
developed based on the previous results. Katz et al. calculated a Model Efficiency score for the 
previous two models, but did not report this score for the final model. This model achieves a 
score of M.E. = 1.18 and a gain of Kg = 0.150. While the classification false-negative is 
moderately low at 15%, the very high false-positive percentage impairs this model’s ability to 
predict the likely location of archaeological sites.  
 
Compared to the Cowin and Stewart and Kratzer models, these results are quite poor. The Cowin 
and Stewart and Kratzer models had nearly equal or much better correct site classifications, but 
within site-likely areas of almost half to three-quarters the size of the Katz et al. site likely area, 
respectively. It is difficult to discern where the final model departed drastically from the previous 
models, but it would seem somewhat unlikely that it was because of the choice of variables. With 
many variables in common between the models, it may have been the weighting or balance of 
cut-points for the model classification that sent them in different directions. A more remote but 
potential source of difference may be in the way Katz et al. reported their findings and the way 
they are interpreted here. The assumptions posed earlier were necessary to squeeze this 
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assessment out of their report, but should not have led to such differences in the results. Overall, 
it appears that the final model Katz et al. produced performed much worse than the sample 
models initially created.  
 

Table 47 - Model Class Assignments from Katz et al. (2002) 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  
Present (M) Absent (M') Total % 

Site 
Observation 

Present 
(S) 

0.001 (33) 0 (6) 39 0.2% 

Absent 
(S') 

0.718 
(17170) 0.28 (6699) 23869 99.8% 

 
Total 17203 6705 23908 1 

 
% 72.0% 28.0% 1 

  
 

Table 48 - Model Classification Results from Katz et al. (2002) 

 
Conditional Probabilities 

  
Model Prediction 

 

  

Present 
(M) Absent (M') Total 

Site 
Observation 

Present 
(S) 

0.85 0.15 1.0 

Absent 
(S') 

0.72 0.28 1.0 

 
 
Assessment: 
The three models Katz et al. created offer a very interesting opportunity to evaluate different 
models built from and tested with the same data. Further, this study allowed for the retesting of 
two models created for different data sets and environments. What we learn from this latter point 
is that the successful implementation of the Cowin and Stewart and Kratzer models by Katz et al. 
suggests that the variables and weights may be broadly applicable throughout western 
Pennsylvania. The high correct classification of these models, with accompanying larger site-
likely areas, may signal that these models hit on some of the basic variables that influence 
settlement throughout upland regions. The large false-positive classifications make it clear that 
there are additional variables that need consideration, but the basic variables seem to be present. 
The utility of simple judgmental weighting of basic variables is verified in these results. 
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Aside from the poor performance of the final model created by Katz et al., there are additional 
topics within this study that can be reviewed. First, the Model Efficiency (M.E.) measure of a 
model’s performance is not a very accurate or easily interpreted metric. This measure, referred to 
by Verhagen (2009) as the indicative value, can range from 0 to 100. However, the issue with 
interpreting this result is that the difference scale is very much non-linear. For example, if 70% 
of the sites were found in 1% of the area, the M.E. is 70.00; for 10% of the area, the M.E. is 7.00; 
and for 20% of the area, the M.E. drops to 3.50. This creates a distribution that approximates a 
power law. With such a dramatic difference in the M.E. resulting from relatively small changes 
in the percent of sites or site-likely areas, this measure is volatile. Interpreting the different 
between two M.E. values can be difficult based on this volatility. On the other hand, the 
Kvamme gain statistic (Kg) is basically linear (R2 = 0.995 across the 70% of sites distribution). 
Therefore, the difference between two measures is constant and more easily comparable.  
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THE REMAINING MODELS 
 
The models referenced above were chosen for evaluation because they each exhibited an 
innovative or original methodology, published enough data to evaluate their outcomes, or served 
as reference points for models that followed. Within the full sample of APM reports collected for 
this study, most models did not qualify for detailed evaluation due to repetition of methods 
already evaluated or, most commonly, absence of adequate methodological detail or testing data 
to assess their performance. For the goals of this study, a model without any testing or results is 
of no utility. What this report seeks to understand is which methods, variables, and techniques 
produced the best results and more accurately predicted locations with a high sensitivity for the 
presence of prehistoric archaeological material. Below, the reports that were not able to be fully 
evaluated are briefly discussed in order to understand the full breadth of this APM sample. This 
discussion will be organized by model type and reflect the potential within each model. 
 
Qualitative Models 

Two models fit this category: Becher et al. (1997) and Polglase (1997). Both of these models 
were constructed for the early planning stages of pipeline projects in western Pennsylvania. 
Similarly, each model utilized the same small list of basic variables including slope, distance to 
water, and landform type. Additionally, Becher et al. looked at the types of water sources, but 
this variable had no bearing on the final associations. The models that resulted from these 
projects associated very similar qualities with high archaeological sensitivity. These qualities 
focused the high sensitivity toward areas near water, on level ground, and preferably on 
floodplains, terraces, benches, or near saddles and gaps. 
 
With no published internal or external test results, evaluating the utility of these models is not 
possible. The method of these models was quite simple, but likely served their purposes. The 
selection of variables was equally basic, but very much in line with the findings of regional 
surveys and settlement pattern analyses of that time (e.g., Cowin 1980). Variable combinations 
similar to these were tested by Stewart and Kratzer (1989) with limited success, and again with 
greater success by Katz et al. (2002) while retesting Stewart and Kratzer’s model. 
 
Associative and Composite Models 

As a very common model type, there are a number of reports of this type that could not be fully 
evaluated. The majority of these included models created for planning purposes that did not 
include any internal testing or field checking. The methods utilized within this group ranged 
from simple ad hoc models of limited variables to more complex attempts at geomorphological 
analysis and ecological community modeling. 
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The simplest models of this group included pipeline studies by McIntyre (2009) and Reinbold 
(2010) and Means’s (1998) model for the Meyersdale Bypass project. All of these projects 
created simple models that associated high sensitivity with low slope on or near landforms such 
as floodplains, benches, and saddles. McIntyre (2009) and Reinbold (2010) added the variable of 
wetlands and soils. Neither report provided results that can be evaluated. Blades et al. (2007) 
created a model for the Deer Creek watershed that incorporated many of these same variables 
and used the associative method. However, Blades et al. incorporated a few attempts at statistical 
testing to gauge the effects of model variables. While it is arguable whether their use of the 
Analysis of Variance was the appropriate statistical test with this data set, Blades et al. did test 
the ability of cost distance variables to “explain” the variability in settlement location relative to 
different prehistoric time periods. This is an interesting approach and may have good utility. Two 
additional models of very similar methods and variables were created by A.D. Marble (2003) and 
Duncan (2002). The model from A.D. Marble did not provide test results. The model by Duncan 
was field tested, but no sites were identified.  
 
Two models documented in Baublitz et al. (2003) and Baublitz and Shaffer (2004) applied 
within Centre, Clearfield, and Jefferson Counties, Pennsylvania, were completed with a very 
similar approach. The authors utilized the variables of slope, distance to third order streams, soil 
drainage, soil type, distance to confluences, distance to wetlands, distance to quarries, and 
previous disturbance. As with other associative models, Baublitz and his colleagues ranked the 
variables based on judgment and previous studies. The more interesting aspect of this 
methodology is the use of negative weights for the variables that were considered to indicate the 
highest sensitivity (slope, distance to third order streams, and soil drainage). If any quadrant of 
the model exhibited a low value for any one of these variables, the entire quadrant was 
considered low sensitivity regardless of the other variables. In the same vein, if the variable of 
previous disturbance was high, all other variables were disregarded and the sensitivity was set to 
low.  
 
Perazio (1995) created an interesting and potentially well performing model for a Pocono area 
study for the Bushkill Road School Complex. Perazio used a similar group of variables as the 
previous models, including slope, distance to water, soil drainage, and aspect. Perazio also used 
elevation above nearest water and soil, and plant and animal habitat as variables. A binary 
weighting scheme of high sensitivity (1) and low sensitivity (2) was employed and led to a range 
of sensitivity scores from 7 to 13. Unlike many of the reports here, Perazio did provide data from 
a field survey (Mooney et al. 2003) that allowed for some assessment of performance. However, 
the sample of sites was small and the initial sampling strategy was very biased toward high 
sensitivity quadrants. Perazio revised the strategy and resampled with less bias, but the site 
sample was still too small to make quantitative judgments.  
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The final two models in this group utilized methodologies quite different from the previous 
models (and each other), but still based the assessment of sensitivity on the association of other 
factors. For the Susquehanna Beltway project, Lawrence et al. (2002) created what is considered 
the most “deductive” model in this study. The intention of this model was to side-step the bias 
inherent in known site samples and follow a method that modeled plant and animal communities 
assumed to be important to prehistoric life and composite these resources into an overall model 
of “maximum habitat overlap.” Lawrence et al. utilized the work of Versaggi to classify resource 
availability into units called MSR (Multiple Resource Seasons). As a basic description, each 
MSR was modeled as a collection of sub-models such as medicinal plant species distribution, 
white-tailed deer yards, beaver habitat, wind protection, soil fertility, and presence of lithic 
resources. Each MSR contained a unique mix of variables pertinent to that season and the final 
model was a composite of the MSR. The lack of reliable PASS site information for the study 
area, a prime reason for the creative model methodology, did not allow for testing of the model 
results. However, Lawrence et al. pointed out that a known prehistoric site that contained hearth 
features and a second site identified in Phase I testing were located in an area modeled as high 
sensitivity for season 1 macroband base camps. While the methods were very well researched 
and interesting, repetition of this model in a more well-surveyed area would help confirm or 
refute the results.  
 
The final model of this type was a small model created by Yamin et al. (2010) for a one-block 
area within Old City, Philadelphia. With a lack of detailed site location data and an undeniable 
history of disturbance in these environs, a different approach to modeling sensitivity was needed. 
The basis of this model was a geomorphological recreation of the Dock Creek stream valley 
based on comparison to other coastal streams, historic documentation of stream conditions and 
alterations, borehole data, and an early nineteenth-century topographic survey. The theory of this 
model was to recreate the shape of the surrounding land prior to historic development and then 
trace the possible alterations, both cutting and filling, to this landscape throughout history to 
assess the potential for intact ground surfaces. The stratigraphic model was then put into the 
context of known prehistoric sites and contact-period documentation to better understand site 
potential. While no testing was done at this location, the original approach and use of a wide 
variety of data sources is quite interesting.  
 
Correlative with and without Background Testing Models 

The final grouping of the remaining models is those that included attempts to measure the 
correlation of site locations to specific variables within the study area. Most of these models 
were interesting and well done, but did not provide survey results or the necessary information to 
interpret model performance.  
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The earliest of these models was Johnson et al. (1989), with a model for a Monongahela cultural 
resources inventory. This relatively simple model was part of a larger study of the Monongahela. 
Essentially, this model attempted to formalize many of the environmental variables often cited in 
regional studies of the Monongahela. The initial set of variables investigated were topographic 
landforms, drainage divides, number of frost-free days, proximity to Native American trails, and 
soil type. Johnson et al. quantified and tabulated the relationship of known Monongahela sites to 
these variables and produced a model that was much more of a settlement analysis than an actual 
sensitivity assessment. However, the interesting aspect to this study was the authors’ recognition 
that drainage divides and Native American trails were highly correlated to each other. What 
Johnson et al. describe is the property of multicollinearity. Noting that these two variables were 
strongly correlated to each other has implications for the introduction of bias and the overall 
validity of testing using those variables. This is a very important concept within any form of 
spatial analysis. 
 
A settlement analysis created for the 202 Bypass in eastern Pennsylvania created by Diamanti et 
al. (1993) utilized correlation of variables to site locations. Diamanti et al.’s study did not result 
in an actual predictive model or sensitivity assessment, but it did develop a well-constructed 
associative framework that considered site types and variables. Believing that PASS site 
locations were too biased to serve as a reliable data source, Diamanti et al. utilized information 
only from sites identified through systematic survey. Along with these sites and an extensive 
review of regional literature and settlement analyses, the authors created a framework of site type 
expectations relative to variables such as topographic landforms, slope, soil drainage, soil 
productivity, and distance to water. Tables were then made that correlated site types and 
variables. The framework was modified based on the empirical evidence. In and of itself, this 
framework stands alone as a very useful piece of research combining deductive theory and 
empirical observations. However, when applied to a 10% field survey of the 202 Bypass project, 
the results were not sufficient to evaluate this model. With a total of two identified prehistoric 
sites, both within moderate sensitivity areas, the test data set was too small to draw conclusions.  
 
The final correlative without testing model was documented in Coppock and Heberling (2001) 
and Coppock et al. (2003) for the U.S. 219 projects in Somerset County, Pennsylvania. The 
model from 2001 utilized a small list of variables including slope, distance to water, and site 
type. These information classes were taken from information within the PASS database. An 
initial model was created based on landform sensitivity assessments from Dr. Frank Vento and 
combined with information gained from correlating sites to distance to water and slope. 
Following a Phase I field survey, this model was tested with 50 previously undocumented site 
locations. The results of this test indicated that the classification of both slope and distance to 
water should be adjusted for a better fit. Once these variables were adjusted, the resulting revised 
model correctly classified 86% of the site sample in high sensitivity. Unfortunately, the actual 
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size of the high sensitivity area was not disclosed, therefore the gain statistic and classification 
errors could not be calculated. 
 
The model by Coppock et al. (2003) was an expansion of the previous model that used the 
variables of cost distance to water, slope, distance to Native American trails, soil drainage, 
landform type, bedrock type, site type, and disturbances. While the performance of this model 
cannot be assessed without results, two interesting methodological outcomes should be noted. 
First, whereas most models in this study consciously ignored the potential for rockshelters, 
Coppock et al. made a parallel model that utilized the variables of bedrock type, slope, and cost 
distance to water. This model was made specifically to assess the sensitivity for the presence of 
rockshelters. Secondly, Coppock et al. used the correlation of sites to variables to create both 
relative weights within variable classes and factor weights for each variable. In descending order, 
Coppock et al. ranked cost distance to water, percent slope, soil drainage, distance to Native 
American trails, and the presence of a floodplain or terrace as the variables with the largest 
contribution to overall sensitivity. The model was created by multiplying the intra-variable class 
weights by the overall class weight to get a total weighted value for each class. This method was 
used a number of times throughout the reports in this study. 
 
Last, unlike the previous correlative type models, the final report of this type used the correlative 
technique and incorporated background data testing. A model by Glenn (2010) for the Erie 
National Wildlife Refuge, Crawford County, Pennsylvania, considered a number of variables at 
the onset. These variables included elevation, slope, aspect, solar insolation, distance to streams, 
distance to confluences, distance to prime farmland, cost distance to streams, confluences, prime 
farmland, hydric soils, and distance to Native American trails. The method of correlating these 
variables to site locations was simply the use of counts of known sites per variable class. A 
visual inspection of the tables was used to interpret which variables had the best ability to 
differentiate site locations. From this, Glen retained five variables for the model: slope, cost 
distance to confluence, cost distance to streams, cost distance to prime farmland, and hydric 
soils. Glenn then used a proportional weighting scheme that assigned sensitivity weights to each 
variable class proportional to the percent of known sites counted within that class. The final 
model was a sum of the weights. 
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4. RESULTS OF MODEL EVALUATIONS 

 
The evaluations presented above cover a wide range of model types, methodologies, and 
outcomes. Through this, a number of observations concerning good and not-so-good APM 
practices become apparent. This section will synthesize the results and findings relative to what 
made for successful models and what led to poorly performing models. Three areas of the 
modeling process will be discussed: model reporting, variable selection, and methodology. 
 
REPORTING 
 
Second only to models not being validated or tested, the lack in reporting of key quantities such 
as quadrants of all sensitivity classes or percent of area surveyed, was the most common barrier 
to evaluating model results. In many cases methodology, goals, and theory were clearly stated 
and elaborated on well enough to understand the approach and expectations. However, the 
results of tests and validations, if conducted, were not as frequently reported with such clarity. 
That being said, a number of reports did an exemplary job of presenting all the data necessary to 
fully interpret the results. The reports by Duncan, for example, each included succinct tables 
documenting model classifications for each test and revision.  
 
Also problematic is that many of the reports that utilized the weighted methods (associative, 
judgmental, and correlative) did not adequately define the way in which variables were 
classified, the class breaks, or the weights of each class. Without this information, models cannot 
be repeated, and interpreting the contribution of each variable is very difficult. However, reports 
such as Bailey and Dekin (1980), Neusius and Neusius (1989), and Coppock et al. (2003) 
provided ample information for anyone to recreate their models.  
 
Finally, a number of the models in this study were bare in their documentation of model creation 
methodology. In the simpler weighted sum models, the lack of details generally concerned the 
methods by which variables were classified and weighted. The end result generated through 
summing these weights did not require much explanation. In the models with more involved 
methods, correlation statistics, or regression techniques, knowing the methods is critical to 
understanding the assumptions on which the model was built. Without understanding these 
assumptions, the model results become removed from context and cannot be correctly 
interpreted. Additionally, without clearly defined methods, a model cannot be recreated for 
validation or use in new areas.  
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VARIABLES 
 
Within the APM models evaluated here, the variables chosen to contribute to archaeological site 
sensitivity or aid in the explanation of variance within known settlement locations were 
decidedly environmental. This is to be expected given the wide availability of environmental 
data through USGS quadrangle maps and publications and USDA soil surveys. Attempts to 
explain the variation in site location through cultural variables were very few. The most common 
attempt to use cultural input was in the form of historical Native American trails as documented 
by Wallace (1965). This variable was used in a number of studies. Although it has not been 
shown to strongly correlate with site locations, Johnson et al. (1989) have suggested that it is 
highly correlated with drainage divides and other environmental variables. Lawrence et al.’s 
(2002) used of “deductive” variables such as deer yards, beaver habitat, plant species 
distribution, and ecological variables was an attempt to sidestep the most common environmental 
variables for those that may be more able to explain habitation location choices. While still 
environmental in character, these variables were intended to seek a new dimension of cultural 
choice in favor of the more typical environmental constraints.  
 
Table 49 is a generalized list of the most commonly used variables within the APM reports 
reviewed here. Most every model included two variables pertinent to topographic slope and some 
measure of access to water. Following these most basic attributes were topographic landform, 
often categorized as floodplain, terrace, bench, saddle, etc., and some measure of soil 
characteristics. Soils were measured by drainage, depth, texture, type, or suitability. Together, 
these four variables—slope, water, landform, and soil—were the most commonly used within the 
models studied here. These four are by no coincidence the simplest to generate from the base 
data of USGS maps, digital elevation models (DEM), and stream coverage. Following these in 
usage were a series of distance and cost distance variables measuring various aspects of 
hydrology, bedrock, and proximity to Native American trails. These reflect some of the many 
permutations of measurements of hydrology, the use of cost distance with slope as the cost, and 
additional data sources such as the USGS and Wallace (1965). Less frequently used are the 
variables of topographic aspect, hydrology network variables such as confluences and stream 
rank, solar insolation, and topographic relief. Aspect, relief, and solar insolation are all based on 
the DEM and slope and can be strongly correlated to each other. Finally, the list in Table 49 
contains a few attempts to use a variety of cost distance measures and more variations of 
hydrology along with absolute elevation.  
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Table 49 - Relative Percentage of Variables Used within Reports in this Evaluation 

Variable Class 
Relative percent 
of use in report 

sample 
Soil Characteristics (Drainage, Texture, Type) 75% 
Topographic Slope 75% 
Topographic Landform 70% 
Elevation above Water 40% 
Cost Distance to Confluence 30% 
Cost Distance to Streams and Water Bodies 30% 
Distance to Streams and Water Bodies 30% 
Surface Geology 30% 
Cost Distance to Native American Trails 20% 
Depth to Bedrock 20% 
Distance to Native American Trails 20% 
Stream Order 20% 
Topographic Aspect 20% 
Wildlife Suitability 20% 
Cost Distance to Topographic Saddles 15% 
Distance to Drainage Divides 15% 
Distance to Steam Confluence 15% 
Number of Frost Free Days 15% 
Solar Insolation 15% 
Local Topographic Relief 15% 
Cost Distance to Drainage Divides 5% 
Cost Distance to Headwaters 5% 
Cost Distance to Lithic Sources 5% 
Cost Distance to Peaks 5% 
Cost Distance to Vantage Point 5% 
Cost Distance to Wetlands 5% 
Depth to Ground Water 5% 
Elevation  5% 
Flood Frequency 5% 
Local Stream Density 5% 

 
Determining which of these variables are the most successful at predicting archaeological site 
locations in these studies is quite difficult. The reason for this is that the model types of 
qualitative, associated, judgmental, and correlative without testing do not have a mechanism for 
determining how background data influence the variables or how each variable contributed to the 
overall success or failure of a model. Unfortunately, these model types make up the majority of 
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the models in this study. The only evidence for which variables were the most successful in 
assessing sensitivity is based on the model builders’ assignments of weights. However, these 
assignments are generally always based on judgment. While these judgmental weights may be 
useful, without testing against chance alone, we can only assume that they reinforce the 
circularity of the bias in know site locations. Further, the very frequent use of the summed 
weights methodology does demonstrate which variables, or perhaps more importantly the 
relationship between variables, that contribute to each rank of sensitivity. This is because the 
weights of each variable are summed into a single measure that can be attained through a number 
of different variable permutations.  
 
Only studies that utilized some form of statistical test for sites and background data, such as the 
K-S test, or used a regression methodology, contain the mechanisms to determine which 
variables contributed to the model results. Table 50 lists the environmental variables that show a 
statically significant difference in distributions at archaeological site locations as compared to 
background locations. Some studies in this table are included because they incorporated this step, 
but did not publish documentation of their findings. Other studies tested within the classes of 
variables, while others only tested the variables themselves. Finally, some used the K-S test 
while others used the Pearson’s Chi-Squared test and the results were variously reported as test 
statistics or p-values. While some interpretation of the results was necessary, Table 50 indicates 
the most likely variables that have been found to be statistically significant in discriminating 
archaeological site locations from background values. These results are only relevant within the 
physiographic setting within which the study was applied. As is expected, the variables 
pertaining to slope, soil characteristics, availability of water, and landform are the most common.  
 

Table 50 - Significant Variables from Studies with Background Testing 

Citation 
Model 
Type Significant Variables 

Significant Variable 
Classes 

Miller (2002) and 
Miller and Kodlick 

(2006) 

Correlative 
with 

background 
testing  

Soil types 

Poorly drained floodplains 
Slopes/ridges, moderate 
fertility 
Water/frequently flooded 
soils 

Aspect 
Southeast aspect 
West aspect 

Slope 
0 - 3% slope 
3 - 8% slope 

Distance to water 
300 - 375 meters 
375 - 450 meters 
450 - 525 meters 

Whitley and Correlative Elevation 501 - 750 feet 
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Citation 
Model 
Type Significant Variables 

Significant Variable 
Classes 

Bastianini (1992) with 
background 

testing  
Slope 0 - 5% 

Landform Floodplain 
Distance to water 0 - 100 meters 
Distance to confluence 0 - 100 meters 

Hart (1994) Logistic 
Regression 

Order of Nearest Stream N/A 
Distance to nearest stream N/A 
Elevation above nearest stream N/A 
Elevation above nearest confluence N/A 
Slope N/A 
Soil Drainage N/A 
Soil texture N/A 
Depth to water N/A 

Duncan et al. 
(1996) 

Correlative 
with 

background 
testing  

Slope N/A 
Cost distance to nearest trail N/A 
Cost distance to river confluence N/A 
Cost distance to river N/A 
Local relief N/A 
Cost distance to major tributary N/A 
Distance to nearest spring N/A 
Cost distance to nearest vantage 
point N/A 

Cost distance to drainage divide N/A 
Cost distance to localized peak N/A 
Cost distance to nearest saddle N/A 
Solar insolation N/A 
Soil fertility N/A 
Soil agricultural capability N/A 
Soil suitability of wildlife N/A 
Soil water capability N/A 
Soil drainage N/A 
Bedrock formation N/A 

Duncan and 
Schilling (1999a) 

Correlative 
with 

background 
testing  

Significance measures not 
published N/A 
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Citation 
Model 
Type Significant Variables 

Significant Variable 
Classes 

Duncan and 
Schilling (1999b) 

Correlative 
with 

background 
testing  

Significance measures not 
published N/A 

Duncan et al. 
(1999) 

Correlative 
with 

background 
testing  

Significance measures not 
published N/A 

 

METHODS 
 
The overall trends noted within this body of APM reports could be summarized by saying that 
most models are based on the summation of judgmental weights applied to a common group of 
untested environmental variables. The majority of models derived the weights, which were 
ultimately either multiplied by a factor or simply summed, through judgmental means. Further, 
these models were not frequently validated against internal or independent data and were 
reported with various degrees of methodological detail. Alternative methods included the 
assigning of weights proportional to site percentages in a class (Glenn 2010) or weights derived 
from the difference between site and background percentages (Whitley and Bastianini 1992) by 
regression coefficients (Hart 1994) or through associative and composite models (Lawrence et al. 
2002; Yamin et al. 2010). However, this generalized statement masks the many interesting 
techniques, variables, and discussions that were contained within these reports.  
 
Interestingly, it does not appear that any one modeling method is more successful than any other. 
Each different methodological approach is shown to be capable of producing a model that was 
efficient and performed well relative to its goals. Both simple models with few variables and 
more complex models with many variables had model performance results that seem to be about 
equal. Given the difference in how many times each method was practiced, differences in 
validation techniques, and variety of reporting standards, the different effect of each method 
cannot be teased out of the performance results detailed above. However, there are other 
methodological issues that set these model types apart. 
 
Qualitative and associative models, despite their simplicity, are capable of producing useful 
results. To their advantage, these models are intuitive, broadly applicable, and rely on research as 
opposed to site samples. Their negative qualities are that the research from which they are built 
may be biased and may not be applicable to all the variables of a study area. Further, it is 
difficult to assess what variables contributed to the pattern or if the results are meaningful.  
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The two composite models of this evaluation did not contain any validation of their results and 
their success is unknown at this time. The methods employed in the models used very different 
data sources and sought to understand very different dynamics, but both approached their results 
by creating explanatory models as the source of sensitivity. The advantage of this is that the 
confidence of the model can be judged based on the quality of the research from which it is 
based and the inclusion of an explanatory mechanism. However, the negative for such an 
approach is the availability of the data from which the explanatory models are built and the fact 
that the variance of each explanatory model is carried over as they are composited into the final 
model. This more “deductive” approach may carry a much greater list of assumptions than other 
types of models. 
 
Judgmental model methods produced many of the successful models in this study. This likely 
has much to do with the large number of studies that used this technique. Like qualitative and 
associative models, the judgmental models are generally simple, easy to understand, weighted 
based on research, and do not require known sites in the study area. Also like qualitative and 
judgmental models, it is difficult to assess why a model works or why it fails. Revising 
judgmental models is done mainly through adjusting weights with no real feedback until the 
model is tested again. In this sense, this method searches for the best solution without guidance 
from the results. Therefore this method can be quite inefficient if the modeler is seeking to find 
the best fit. 
 
The correlative methods are only slightly more complex than the judgmental methods with the 
added requirement of creating histograms or statistical testing. The correlative model without 
background testing builds on the previous models by understanding which variables are more 
strongly associated with site locations, as opposed to relying on experience and research. 
However, without background testing, it is difficult to know how the results compare to a model 
by chance. The element of background testing greatly improves the ability of a model to identify 
those variables that can discriminate site locations from background values. In theory, this 
should remove much of the background “noise” from the pattern and allow for an understanding 
of which variables contribute most significantly to the variation.  
 
Finally, the regression approach was used to success by Hart (1994) and incorporated into the 
methods of Duncan and Schilling (1999a, 1999b). As opposed to the previous model types, 
which are mostly mathematical models in that variable weights are summed to create an index of 
sensitivity, the regression approach is a statistical model that uses site presence/absence to 
estimate probability. This difference makes the regression model somewhat more difficult to 
create, much more reliant on existing data, and saddled with a different set of assumptions. The 
negatives include the requirement of software (and the knowledge to use it) and a data set that 
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does not drastically violate the assumptions of the regression method. The benefits of this 
approach are that the relationship between variables can be modeled; the test results contribute to 
the understanding of the strength and effect of each variable on the outcome; predictions are 
based more on empirical evidence and less on judgment; and each model can be compared and 
adjusted based on a number of metrics. As with all of these models types, however, in some 
situations the strengths are indeed weakness and vice versa. The available data, environmental 
character, and goal of each modeling situation will determine which model is best suited.  
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5. RECOMMENDATIONS AND CONCLUSIONS 

 
The review of 32 archaeological predictive model studies from Pennsylvania has created a 
context within which to understand the utility of many different modeling approaches, 
techniques, and variables. This body of reports contains examples of success and failure, simple 
to complex model methods, rigorous methods to ad hoc applications, and documentation ranging 
from the detailed to the abstract. The challenge in this review was finding a core contribution 
from each study, despite any given report exhibiting a number of the opposing characteristics 
listed above. No one single study stood out as the best (or worst) example of how to create an 
archaeological predictive model. While some were certainly better than others, each had positive 
and negative aspects and were created within a number of constraints including scope, budget, 
site data quality, background data quality, computing power, software, map resolution, and 
model approach.  
 
Four very clear conclusions can be reached based on this study: 1) each study area and situation 
has constraints that call for flexibility, creativity, and explicit assumptions when choosing a 
modeling method; 2) model variables may range from a simple few to numerous permutations, 
but they must be tested against background values and preferably assessed for multicollinearity 
and spatial autocorrelation and evaluated through a stepwise method; 3) models must be tested at 
a minimum against internal data, preferably against independent data, and preferably against 
numerous data sets to understand the model’s stability—otherwise the success of a model cannot 
be evaluated; and 4) the reporting of any model must be done thoroughly and with as much detail 
as possible, including variables, weights, calculations, and most importantly, assumptions and 
test results. The guidelines and recommendations below detail how these conclusions can be 
implemented in this statewide predictive model set. 
 
GUIDELINES FOR REPORTING  
 
The reporting of model goals, assumptions, methods, and results should be clear and concise. In 
order for a model to be understood or reapplied to a new study area a reader must be able to 
understand why the model was created in a particular way and how the independent variables 
were combined to create the resulting sensitivity. As was the case with many models in this 
study, the lack of key details led to the inability to interpret model results and judge 
effectiveness. At a minimum, specific documentation should include the following: model goals; 
theoretical orientation and justification; variables selected for evaluation; variables accepted for 
the model and how they were tested; modeling steps and details such as weighting schemes or 
regression metrics depending on the model type; the percentages of the study area covered by 
each sensitivity class and the classification of site and non-site areas into each class; the 
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evaluation of the findings; and the assumptions and limitations that guide the implementation of 
the final model. These guidelines will be implemented in this study through the consistent and 
thorough presentation of methodology, validations, and results. The inclusion of these data will 
allow the models from various regions to be compared, evaluated, and recreated with new data. 
 
GUIDELINES FOR MODEL VARIABLES 
 
As shown by Duncan and Schilling (1999a, 1999b), the use of variables does not have to be 
limited to the basics of slope, access to water, and landforms. While these more basic variables 
may produce the best model in some circumstances, there may be other more important variables 
in other circumstances. Duncan’s approach of creating many permutations and alternate variables 
is time and data intensive, but beneficial when using a correlation with testing or regression 
approach. In these approaches, many variables can be screened to assess which best 
differentiates the site location pattern from the environmental background. Having numerous 
variables to test gives flexibility to find aspects of the pattern that may not be obvious or 
previously considered. With regression approaches, a stepwise method can be used to produce a 
model with the best fit from a selection of numerous variables, or other model metrics can help 
determine which variables contribute the most. Additionally, variable relationships can be 
modeled in numerous ways. Possible complications to this approach are that using too many 
variables may add noise to the model and that certain variables may be strongly correlated to 
each other (multicollinearity) and affect the model outcome.  
 
On the other hand, simple models created for expedient scoping or in areas of limited data 
availability are likely to be best served by limiting the number of variables. In these instances, an 
understanding of the environment is key. Often, access to water, slope, landform, and soil type 
will serve as a solid foundation for a judgmental model, but if the environment appears to have 
more exaggerated distributions of these basic variables an alternative may be necessary. For 
example, attempting to model site sensitivity in an area covered in wetlands will greatly limit the 
usefulness of access to water as a variable. Research may show that sites are often found on 
small, dry, raised landforms, in which case a variable such as local topographic relief in 
conjunction with soil type would be the most useful. Without testing variables against the 
background, it is best to create simple models and then introduce variables one at a time and 
compare the results against the previous model using the same independent test sample. 
 
To implement these guidelines in this project, the number and complexity of variables will be 
predicated on tested correlations and the type of model to be employed in each area. A reference 
database of variables that cover the entire state will be created, from which variables appropriate 
to a given model type and area can be selected. The database will include primary variables such 
as elevation, hydrology, and geology, as well as secondary variables such as cost-distance and 
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measures of topography (e.g., roughness and topographic position index). The secondary 
variables will be computed for various neighborhood sizes, such as 30 m, 100 m, 1 km, etc. The 
first step in variable selection for any given area will be the use of statistical tests, such as the K-
S test, to define each variable’s usefulness in discriminating site locations from background 
values. Those variables that do not discriminate better than chance will be excluded from the 
model. Those variables that do successfully discriminate locations will be considered further in 
the model building and testing phases.  
 
For models in areas of low data quality, a simple model may be employed in which a bottom-up 
approach will be taken. In this approach, a few basic model variables will be utilized for an 
initial model, then additional variables will be added and tested to assess multicollinearity. If a 
variable is not strongly correlated to another and increases the ability of the model to predict site 
locations, it will be retained. Conversely, in areas where data quality is good, more complex 
models stemming from the regression family of methods may be used. In these models, a top-
down approach to variable selection may be employed. In this case, many variables will be 
utilized, and the final model will be selected by the combination of variables that achieve the 
best fit and balance of efficiency and completeness.  
 
GUIDELINES FOR MODELING METHODS 
 
There is no one best modeling methodology or model type. What this study shows is that each 
situation has different constraints that help inform which model type(s) may work and which 
may not. That being said, some of these model types are better able to give the feedback 
necessary to understand if they are an appropriate approach, while other methods do not. 
 
Qualitative and associative model types were popular earlier in the history of APM due in part to 
the lack of digital environmental data, computers, and software. These models were also popular 
because a number of regional survey programs in the preceding years had generated a large body 
of synthetic and site/settlement data. These models were often the first attempts to formalize the 
survey findings into models that could be used to focus field efforts and planning. However, 
these models were very much based on survey data that may or may not have been collected 
systematically, and the model builders did not have many mechanisms for assessing the meaning 
of the survey results. Situations that may be conducive to the application of these models include 
areas with few to no known sites, little if any research, or situations where the goal of the study 
is to develop a framework of sensitive environmental associations and site expectations that can 
be tested and refined with further survey. In most situations where the outcome is intended to be 
a continuous surface of quantified site location sensitivity, this model type is not likely to be the 
most appropriate choice.  
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Judgmentally weighted models are the most common within this APM report study. That is 
likely because they are intuitively easy to understand, are based on research, and require less data 
and less statistical understanding than correlation or regression models. This model type can be 
applied quickly and modified to suit research hypotheses and different environments. However, 
these models are difficult to separate from the random environmental component because the 
attributes are not tested against chance. This model type is very useful in a study area that has 
very few or no known archaeological site locations or when the goal is to construct weighting 
schemes for a research purpose. In situations where a sample of site locations are known, it is 
recommended that some form of correlation and preferably testing against the background 
become part of the modeling methodology.  
 
Correlative models are used throughout the chronology of reports studied here. These models 
offer a deeper understating of how archaeological sites are distributed relative to the 
environmental background and can be used to support or dispute hypotheses regarding site 
distribution relative to the environment. In particular, the correlative model type with testing 
allows for not only the characterization of archaeological sites relative to other sites within a 
variable, but also relative to the environmental background. This characterization is critical if the 
goal of the study is to attempt to isolate portions of the landscape that are similar to the 
environmental pattern observed at known site locations. The correlative method is appropriate in 
any situation where a sizable sample of site locations is known or in an environment of the same 
background character as a well-surveyed area where settlement patterns are likely to be 
comparable. Any time the correlative method is used, it should always include some form of 
statistical testing of variables at site and background locations. If that is not possible, at a 
minimum a visual comparison of histograms from sites and background should be used. 
 
Finally, regression methods, specifically logistic regression, was not used frequently within this 
study, but has been researched by numerous authors throughout the history of APM (see Judge 
and Sebastian 1988; Warren 1990). Helping to explain both of these observations is the fact that 
the family of regression methods requires an elevated understanding of statistics, is technically 
more difficult to apply, may provide more accurate models in some cases, and carries a certain 
cachet based on its complexity compared to the more mundane non-statistical methods. In spite 
of these qualities, these methods also carry numerous assumptions and data requirements, can be 
difficult to implement and understand, and may not produce better results than any of the 
previously mentioned model types. A successful situation for the use of the regression model 
type would include well surveyed regions with ample and representative known site locations, a 
well-defined pattern of landform usage relative to the background data, numerous variables that 
may be used to seek a reduction in model variance, and an understanding of the assumptions on 
which the particular model is built. 
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To paraphrase Kvamme (1988:327), the two most basic assumptions of archaeological predictive 
modeling are: 1) that site location decisions made by Native Americans were not made randomly 
relative to environmental variables; and 2) that this pattern is represented in known sites and can 
therefore be extrapolated to large areas. The methods that we choose to employ are framed 
largely by the degree to which we are able recognize this pattern from a known site sample and 
the ability of our chosen variables to serve as proxy for those variables that Native Americans 
considered in their settlement decisions. The studies discussed here have shown a wide range of 
ability to successfully approximate this pattern and extrapolate it throughout a study area. Some 
failures were due to methodological choices, others were due to our lack of understanding of 
settlement systems, and yet others to the lack of a strong settlement pattern relative to the 
environment. These are only three of the innumerable unknowns that impinge upon our attempts 
to predict the cumulative effects of thousands of years of individuals and groups making an 
intractable constellation of decisions. However, the results from this study inform us that it is 
possible to predict site locations better than chance alone, that the methods used here and others 
beyond this sample are capable given different situations, and that these methods can contribute 
to the goals of efficient project planning and resource management.  
 
For this statewide predictive model set, numerous modeling methods will be employed in order 
to get the best-fit model. This review has demonstrated that there is no one type of model that 
works in every region. Further, it shows us that both simple and complex models can be equally 
successful (or less than successful) given different data qualities and rigor of implementation. 
Physically, Pennsylvania has very diverse physiographic terrains, hydrologic conditions, 
geology, and preservation. Archaeologically, the knowledge of site locations and attributes from 
region to region varies greatly, from very well surveyed to completely unsurveyed. Finally, the 
underlying cultural and individual decisions that created the archaeological record are the most 
complex variables of all. This project seeks to utilize the many different forms of APM to tailor 
each model to the physical and data realities of each region. This approach will provide the best-
fit model given available data as opposed to a consistent, statewide modeling method regardless 
of how well the data are suited to it. 
 
At a minimum, the most basic models of this study will use the correlative method with 
background testing for environmental variables. This method, used by Whitley and Bastianini 
(1992) and Duncan and Shilling (1999a and 1999b), utilizes weighting schemes that are summed 
to represent the overall sensitivity of different combinations of variables. The pros and cons of 
this method are detailed in earlier chapters, but overall this method can produce successful 
models that are easily understood. This type of model will be used in areas with limited data 
quality. In areas with moderate to high data quality, models from the regression family will be 
attempted. These models include the logistic regression type as used by Hart (1994) and 
developed by Kvamme (1998). Additionally, more complex regression methods, such as 
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multivariate adaptive recursive splines (or “MARS”) will be attempted in areas of high data 
quality. Models of this type have not been attempted previously in Pennsylvania and are only 
currently documented in studies within the ecological field (Friedman 1991; Munoz and 
Felicisimo 2004). They do, however, offer an alternative method that overcomes some of the 
issues with other regression techniques. In the end, numerous approaches will be attempted to 
best describe and model the pattern of known archaeological site locations that is unique to each 
and every watershed in the state. 
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DERIVING THE KVAMME GAIN STATISTIC  
 
A measure of a model’s performance needs to consider two very important aspects: 1) 
classification error; and 2) success in achieving the model’s goals. The first measure of 
performance, classification error, is the calculation of the presence/absence of archaeological 
sites versus the predicted presence/absence generated from the model. This calculation begins 
with the creation of a 2 x 2 matrix of predicted and observed presence/absence as quantified by 
raster cells or site/non-site points (Table A-1). 
 

Table A-1 - Schematic of 2 x 2 Table of Model Outcomes 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  

Present 
(M) 

Absent 
(M') Total % 

Site 
Observation 

Present 
(S) 

M|S M'|S Total 
S Ps 

Absent 
(S') 

M|S' M'|S' Total 
S' Ps' 

 
Total Total M Total M' N 

 
 

% Pm Pm' 
   

 
Kvamme (1990) established this method as a way to assess classification errors, probabilities, 
and a model’s classification relative to chance. In this presentation, M and M' are the modeled 
presence and absence of sites, and S and S' are the observed presence and absence of sites, 
respectively (Figure A-1). The values of M|S, M'|S, M|S', and M'|S' are the count of cells (or 
site/non-site points) within the space assigned to each of those four classes. Table A-2 is an 
example of the results of a model that contained 200 raster cells (or 200 site/non-site points) and 
the calculation of the proportion of cells assigned to each of the four classes.  
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Figure A-1 - Schematic of APM results and components of classification. 

 
Table A-2 - Example of Calculating Probabilities of Model Assignment 

 
Probabilities of Assignment 

 
  

Model Prediction 
  

  

Present 
(M) 

Absent 
(M') Total % 

Site 
Observation 

Present 
(S) 

0.085 (17) 0.015 (3) 20 0.10 

Absent 
(S') 

0.18 (36) 0.72 (144) 180 0.90 

 
Total 53 147 200 1 

 
% 0.265 0.735 1 

  
From Table A-2, these numbers can be understood as the percent of the model space classified 
into each of the four classes. The cell for M|S (0.085) shows that 8.5% of the model space was 
correctly classified as an archaeological site location by the model. The cell for M'|S' (0.72) 
shows that 72% of the model space was correctly classified as not containing sites; the cells of 
M|S' and M'|S follow suit. However, to calculate the classification error these percentages must 
be divided by the percent total of each row, that is, the percent of site-present cells (“Total S”) 
and the percent of site-absent cells (“Total S'”) (Table A-3). 
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Table A-3 - Schematic of Calculations of Classification Success and Error 

 
Conditional Probabilities 

  
Model Prediction 

 

  

Present 
(M) 

Absent 
(M') Total 

Site 
Observation 

Present 
(S) 

Pm|s Pm'|s Total 

Absent 
(S') 

Pm|s' Pm'|s' Total 

 
     

 
Pm|s = (M|S) / %Total S   

 
Pm'|s = (M'|S) / %Total S  

 
Pm|s' = (M|S') / %Total S'  

 Pm'|s' = (M'|S') / %Total S'  
 
The normalization of each percentage from Table A-2 by the total percent of the observed site 
presence/absence cells results in the correct classification percent (Pm|s and Pm'|s') and the 
classification error percentage (Pm'|s and Pm|s') (Table A-4). Using the same example as above, the 
model correctly classified sites 85% (true-positive) of the time and non-sites 80% (true-negative) 
of the time. Alternately, the model had a classification error of 15% for site absence (Pm'|s) and a 
20% classification error for site presence (Pm|s'). The error of site presence (Pm|s') indicates a 
false-positive (Type I) error (considered a “wasteful error” because it requires additional survey 
that may turn up no evidence of archaeological sites). On the other hand, the classification error 
for site absence (Pm'|s) indicates a false-negative (Type II) error (considered a “gross error” 
because it may lead to the destruction of archaeological sites in regions thought to be of low 
sensitivity).  
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Table A-4 - Example of Calculating Classification Success and Error 

 
Conditional Probabilities 

  
Model Prediction 

 

  

Present 
(M) 

Absent 
(M') Total 

Site 
Observation 

Present 
(S) 

0.85 0.15 1 

Absent 
(S') 

0.20 0.80 1 

 
     

 
Pm|s = 17/20  

 
Pm'|s = 3/20  

 
Pm|s' = 36/180  

 Pm'|s' = 144/180  
 
Condensing the measures of classification success into a single number that can generally 
describe a model’s classification efficiency is an important step in comparing models to one 
another. The standard measure of model efficiency used within the APM literature is the 
Kvamme Gain Statistic (Kg) (Kvamme 1988). The Kg is a measure of a model’s percent area 
predicted for site presence divided by the percent of all sites within that area.  
 

𝐾𝑔 = 1 − �
% 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑖𝑡𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑟𝑒𝑎

% 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑖𝑡𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
� 

 
Using the terms of our example, Kg = 1 - (%Total M / Pm|s). Substituting the values of our 
example, Kg = 1- (0.265/0.85), this equation divides the 26.5% of the study area predicted to 
contain sites (from Table A-2, column one, total percent) by the 85% true-positive rate (from 
Table A-4, Pm|s result). The resulting gain is Kg = 0.688. This measure of efficiency is useful 
because it allows for variations of a single model or completely separate models to be compared 
on the same basis of correct site classification. However, the gain statistic has drawbacks. Most 
importantly, the Kg does not distinguish between model completeness and efficiency. A model 
biased toward completeness may encompass all of the known archaeological sites (a high Pm|s) 
but do so only because the site-likely area covers a large region (a high Total M). On the other 
hand, a model biased toward efficiency may minimize the region of site-likely (lower Total M), 
but also correctly classify fewer known sites (lower Pm|s). The fact that you can have models with 
the same Kg but different classification errors demonstrates that the Kg is most useful when 
considered in tandem with the false-negative and false-positive classification error rates.  
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The tradeoff between model completeness and efficiency is the tradeoff between identifying a 
larger area needed for survey and identifying a smaller number of known sites within the site-
likely model (Figure A-2). In terms of the Kg

 statistic, the 0.688 gain of the example model can 
also be achieved with a %Total M as low as 0.05 and a Pm|s of 0.16, or a %Total M as high as 
0.30 and a Pm|s of 0.95. In the first instance, you have a very precise model that claims that only 
5% of the study area is site-likely, but it only correctly classifies 16% of the sites (misclassifies 
84%). In the second instance, the model includes 30% of the study area as site-likely, but 
correctly classifies 95% of known sites (misclassifies 5%). In each of these situations, the 
model’s Kg = 0.688, but the balance between efficiency and completeness are very different. In 
one model, the area suggested for survey is quite small, but arguably, the potential for a 
construction project to impact an unidentified site is quite high, given that 84% of the known 
sites were misclassified. The other model has a very good chance of identifying most 
archaeological sites (5% misclassification), but at the expense of a much larger survey area. This 
leads directly to the point of clearly defining a model’s purpose.  
 

 
Figure A-2 - Schematic of model results biased toward efficiency and completeness. 

 
In most CRM situations, it is assumed that both resource managers and construction managers 
prefer completeness over efficiency. This is because presumably a manager would prefer to 
spend resources upfront on additional survey to avoid spending potentially greater resources 
during construction when an unanticipated archaeological site is impacted. As a general rule, the 
goal of APMs in a CRM context is to bias toward completeness in order to decrease the chance 
of false-negatives and avoid costly project interruption. In the planning phase, a model that 
achieves a Kg of 0.688 and recommends survey of only 5% of the study area may sound very 
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good at the outset. However, once balanced with the high misclassification percent and potential 
for site impacts, it is likely not as appealing. This model, albeit good by the numbers presented to 
the client, would not likely achieve the goals of the resource manager or modeler. This model 
would have low performance based on missing its goals and being ineffective at best and 
disastrous to unidentified archaeological sites at worst. The other example above and the original 
example from Table A-2, which have a lower misclassification percent but a larger 
recommended survey region, are much better performers and more ideally balanced toward the 
mix of completeness and efficiency necessary to give a resource manager confidence when 
implementing the models. In practice, many models that are considered relatively successful 
achieve a Kg of between 0.60 and 0.80. Lower values are likely the result of too few correct 
classifications and too large of a site-likely area. Higher Kg value is certainly possible, and 
desired, in a successful model, but is often the result of overly precise model bias that can 
contain high rates of misclassification errors.  
 
In assessing the performance of the models reviewed in this report the Kg statistic, classification 
errors, and the efficacy in achieving a model’s goals will be considered together. The Kg statistic 
will give an overall sense of a model’s efficiency in correctly classifying site locations relative to 
the size of the region it considers likely to contain sites. The classification successes and errors 
will give a more refined picture of the model’s balance between completeness and efficiency. 
And finally, a model’s effectiveness in achieving its goals will be combined with the previous 
two measures to judge the model’s overall performance. 
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APPENDIX B 

VARIABLES FROM DUNCAN ET AL. (1996) AND 
DUNCAN AND SCHILLING (1999A, 1999B) 
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Table B-1 - Full List of Variables Considered by Duncan et al. (1996) 

Var# Name Field Type Description 
1 abvstrm continuous elevation above stream 
2 macdems_sm1 continuous elevation of cell in feet 
3 macslp continuous slope of the cell in percent 
4 macslp_inv continuous inverted, transformed slope 
5 macasp continuous compass heading for aspect 
6 asp0_180 continuous aspect as degrees from North 
7 solar1 continuous insolation value in morning 
8 relief10 continuous local relief of the cell 
9 relief30 continuous wider local relief 

10 terruf10 continuous local terrain roughness 
11 trlscst continuous cost-distance to nearest trail 
12 trlsdist continuous distance to nearest trail 
13 sprngcst continuous cost-distance of nearest spring 
14 sprngdist continuous distance to nearest spring 
15 strmcst1-6 continuous cost-distance to nearest stream of any type 
16 stream 1-3 continuous cost-distance to nearest intermittent stream 
17 strmcst4-6 continuous cost-distance to nearest perennial stream/river 
18 strmcst4 continuous cost-distance to minor tributary 
19 strmcst5 continuous cost-distance to major tributary 
20 strmcst6 continuous cost-distance to nearest river 
21 solar2 continuous insolation at noon 
22 solar3 continuous insolation in afternoon 
23 solarsum continuous weighted average of solar 1-3 
24 solarwt continuous insolation adjusted for slope 
25 solarwt2 continuous insolation adjusted for 4th root of slope 
26 maccur cont. (-1 to +1) a curvature difference measure 
27 macplancrv cont. (-1 to +1) convexity measure 
28 macprocrv cont. (-1 to +1) concavity measure 
29 teruf210 continuous standard deviation of change in slope 
30 rimindx2 continuous relationship to topographic rim 
31 vantgcst continuous cost-distance to vantage point 
32 peakcst continuous cost-distance to vantage point (peak) 
33 ridgcst continuous cost-distance to ridgetop 
34 divcst continuous cost-distance to nearest drainage divide 
35 divdist continuous Euclidean distance to drainage divide 
36 wtrdist continuous Euclidean distance to nearest perennial water source 
37 cnflcst continuous cost-distance to nearest stream confluence 
38 cnfl4cst continuous cost-distance to stream confluence along tributaries 
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Var# Name Field Type Description 
39 cnfl5cst continuous cost-distance to confluence along major tributaries 
40 cnfl6cst continuous cost-distance to confluence along river 
41 abvstrm2 continuous elevation difference from nearest stream cell 
42 sad1cst continuous cost-distance to nearest saddle > 0 
43 sad2cst continuous cost-distance to nearest saddle > 1 
44 sad3cst continuous cost-distance to nearest saddle > 2 
45 sad4cst continuous cost-distance to nearest saddle > 3 
46 sad5cst continuous cost-distance to nearest saddle > 4 
47 soil# integer (1 to 24) SCS soil code 
48 rock# categorical geologic bedrock formation code 
49 soilcap_r rank value (0 to 4) agricultural capability class 
50 opnland_r rank value (0 to 4) soil suitability for open land wildlife 
51 wetland_r rank value (0 to 4) soil suitability for wetland wildlife 
52 wdland_r rank value (0 to 4) soil suitability for woodland wildlife 
53 hrdwd_r rank value (0 to 4) soil suitability for hardwood growth 
54 d_bdrk_r rank value (0 to 3) code ranking the depth to bedrock 
55 drain_r rank value (0 to 3) ran of soil drainage character 
56 wtrcap_r rank value (1 to 4) rank of soil water capacity 
57 dssnhiw_r rank value (0 to 3) rank of depth to seasonal high water table 
58 text_r rank value (0 to 3) rank of soil texture category 
59 solidstrb rank value (0 to 10) rank of soil disturbance potential 
60 dist_pres2 rank value (0 to 10) combined road, water, and soils disturbance code 
61 strmmk rank value (1 to 6) stream rank of nearest stream 
62 corn_fert ratio/continuous corn bushels per acre 
63 foot_slope binary (0 or 1) soil in foot slope environment 
64 hill_side binary (0 or 1) soils in hillside environment 
65 ridge_top binary (0 or 1) soils in ridgetop environment 
66 stream_terr binary (0 or 1) soils in stream terrace environment 
67 flood_plain binary (0 or 1) soil in floodplain environment 
68 saddle binary (0 or 1) soil in saddle environment 
69 trisbf5g binary (0 or 1) cell located around historic Indian trail 
70 divgf5g binary (0 or 1) cell located around drainage divide 
71 rddstrbbf binary (0 or 1) road disturbance factor 
72 wtrdstrb binary (0 or 1) water disturbance factor 
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Table B-2 - Full List of Variables Considered by Duncan and Schilling 1999a and 1999b 

Var# Name Field Type Description 
1 abvstrm continuous elevation difference from nearest stream cell 
2 asp0_180 continuous aspect as degrees from North 
3 asp90 continuous aspect as degrees for East-West 
4 aspect continuous compass heading for aspect 
5 chrt_cst continuous cost distance to geologic bedrock formation with lithic resource 
6 cnflcst1 continuous cost distance to nearest intermittent stream confluence 
7 cnflcst1_2 continuous cost distance to nearest inter. or perennial stream confluence 
8 cnflcst2 continuous cost distance to nearest inter. to perennial stream confluence 
9 cnflcst3 continuous cost distance to confluence, inter. to major tributary or river 

10 cnflcst4 continuous cost distance to confluence of perennial streams 
11 cnflcst4_7 continuous cost distance to confluence: per. Streams, tributaries and rivers 
12 cnflcst5 continuous cost distance to confluence of per. Streams and river or tributary 
13 cnflcst5_7 continuous cost distance to confluence along major tributaries and rivers 
14 cnflcst6 continuous cost distance to confluence of major tributary and river 
15 cnflcst7 continuous cost distance to confluence of river 
16 csvtdem continuous elevation of cell in feet 
17 euc_strm continuous Euclidean distance to nearest perennial water source 
18 flatsum continuous degree of surrounding flat terrain 
19 peakcst continuous cost distance to vantage point (peak) 
20 relief10 continuous local relief of the cell 
21 relief30 continuous wider local relief 
22 ridgcst continuous cost distance to ridgetop 
23 rimindx2 continuous relationship to topographic rim 
24 rvrcst continuous cost distance to nearest river 
25 sadcst0 continuous cost distance to nearest saddle (all) 
26 sadcst1 continuous cost distance to nearest saddle (moderate) 
27 sadcst2 continuous cost distance to nearest saddle (major) 
28 slp_g continuous slope of cell in percent 
29 slp_inv continuous inverted, transformed slope 
30 sola1rwt continuous morning insolation adjusted for slope 
31 solarwt continuous full day insolation adjusted for slope 
32 strm_rvrcst continuous cost distance to major tributary an driver 
33 strmcst1 continuous cost distance to nearest intermittent stream 
34 strmcst1-2 continuous cost distance to nearest stream of any type 
35 strmcst2 continuous cost distance to nearest perennial stream 
36 strmcst3 continuous cost distance to lakes and ponds 
37 strmcst4 continuous cost distance to major river tributary 
38 terruf10 continuous local terrain roughness 
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Var# Name Field Type Description 
39 teruf210 continuous standard deviation of change in slope 
40 trlscst continuous cost distance to nearest historic Indian trail 
41 vantgcst continuous cost distance to vantage point 
42 wetcst continuous cost distance to nearest mapped wetland 

43 soil# 
integer (1-
100) SCS soil code 

44 corn_fert rank value corn bushels per acre 
45 d_bdrk_r rank value code ranking the depth to bedrock 
46 drain_r rank value rank of soil drainage character 
47 dssnhiw_r rank value rank of depth to seasonal high water table 
48 flood_r rank value rank of flood frequency 
49 hydro_r rank value rank of hydrologic character 
50 opnlnd_r rank value soil suitability for open land wildlife 
51 soilcap_r rank value agricultural capability class 
52 text_r rank value rand of soil texture category 
53 wdlnd_r rank value soil suitability for woodland wildlife 
54 wetland_r rank value soil suitability for wetland wildlife 
55 distrb3 rank value combined road, building, water, and soils disturbance 
56 soildstrb rank value rank of soil disturbance potential 
57 rddstrbbf rank value road disturbance factor 
58 bldgdstrb rank value building disturbance factor 
59 wtrdstrb rank value water disturbance factor 
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