Lecture 02: Linux and C Programming
Language

CSCE 569 Parallel Computing

Department of Computer Science and Engineering
Yonghong Yan
yanyh@cse.sc.edu
http://cse.sc.edu/~yanyh

Contents

Remote Login using SSH
Linux

C Programming
Compiling and Linking

Assignment 1

Computation Server

anin

| '
L %

EREERR

131! \

.
I
=
W =

In the cold and dark
server room!

CEEEEEREEELR NN ey

Mnntnn:aai;‘

.........

P e O o

Run Linux/Unix
Operating System

Client/Server and SSH (Secure Shell)

Your browser)
\ connects to a server % 9
S and requests a page. S
o — . é
—] b‘;:: :grvor ungsd 3
. e requeste &
Clients L, \ |
Your machine Server machine
/ Server runglng a Web running a Web
rowser server
= =

Encrypted SSH login
session to a remote host

Y U3p+kiga e
szKuWOf
SSHuser SSH client JJpWigyO -

(local host)
SSH server
(remote host, ‘remote.com’)

e) GrsQpeNNrPesATIR
VoW gq6+9aGihvidY Lt 7e

The SSH user enters:
ssh remote.com
fsmythe (username)
r@ms20!0 (password)

JpW/8§OrsteNNrPesAIgAbp+k
wgq6+9aGihvidYLtI7eZ
- SQp+QaG|hv1decaV ’

‘What a sniffer on the 4
network can view. ..

Machine for Development for OpenMP and
MPI

* Linux machines in Swearingen 1D39 and 3D22

— All CSCE students by default have access to these machine
using their standard login credentials

* Let me know if you, CSCE or not, cannot access

— Remote access is also available via SSH over port
222. Naming schema is as follows:

e |-1d39-01.cse.sc.edu through I-1d39-26.cse.sc.edu
e |-3d22-01.cse.sc.edu through I-3d22-20.cse.sc.edu

* Restricted to 2GB of data in their home folder (/).

— For more space, create a directory in /scratch on the login
machine, however that data is not shared and it will only be
available on that specific machine.

Putty SSH Connection on Windows

@ PuTTY Configuration @
| Basic options for your PUuTTY session
L _Hhaging Specify the destination you want to connect to
=- Terminal) _)
Oard HOSL 1IN L) =o(8|L
vy
. - Features Connection type:
=) Window (JRaw () Telnet () Rlogin @ SSH () Serial
. .. Appearance
App . Load, save or delete a stored session
.- Behaviour
... Translation Saved Sessions
Selection
H Cologrs Default Settings Load
= Connection = |
-~ Data Save
- Telnet Delete
- Rlogin
+- SSH
""" Serial Close window on exit:
) Aways () Never @ Only on clean exit
[About [Open | [Cancel]

SSH Connection from Linux/Mac OS X Terminal

yanyh@cocsce-11d39-15:~/0pencv$ exit
logout
Connection to 1-1d39-15.cse.sc.edu closed.

MacBook-Pro-7:yanyh yanyh$fssh —-p 222 1-1d39-15.cse.sc.edu —lyanyh|[-X] |

skokskokokokokokokskskokskkkokokokokokokokokokokok Rk *
* *

* This system is for the use of authorized users only. Usage of this\system x

* may be monitored and recorded by system personnel. *

* *

* Anyone using this system expressly consents to such monitoring and is *

* advised that if such monitoring reveals possible evidence of criminal *

* activity, system personnel may provide the evidence from such monitoring *

* to law enforcement officials. *

* .

KKK KKK KKK KK oK oK oK oK oK KKKk Sk Sk Sk ok ok ok ok ok ok ok ok ok kK Sk sk ok ok ok ok ok ok ok sk sk sk sk sk sk ok ok ok ok ok ok k ok oF -X for enabllng X-
Password: windows forwarding so

/usr/bin/xauth: file /acct/yanyh/.Xauthority does not exist

Duo two-factor login for yanyh you can use the graphics

display on your computer.

Enter a passcode or select one of the following options: For Mac OS X, you need
1. Duo Push to XXX-XXX-5878 have X server software
2. Phone call to XXX-XXX-5878 installed, e.g.

3. SMS des to XXX-XXX-5878
passcodes to Xquartz(https://www.xqu

Passcode or option (1-3): 1 artz.org/) is the one | use.

Pushed a login request to your device...
Success. Logging you in... 7

yanyh@cocsce-(1d39-15:~$ (s

Linux Basic Commands

It is all about dealing with files and folders
Linux folder: /acct/yanyh/... .

rm (remove a filer/folder)

— Srmfoo
* |s (list files in the current folder) — $rm -rf foo
- g:z; — Srm-ifoo
_ Sls-a — Srm---foo
— Sls -l --sort=time * cat (print the file contents to
— Sls -l --sort=size —r terminal)
* cd (change directory to) — S cat /etc/motd
— Scd /usr/bin — S cat /proc/cpuinfo
* pwd (show current folder name) * ¢p (create a copy of a file/folder)
— > pwd — Scp foo bar
° _"’ (Shcc()ere fOlder) BN cp -a foo bar
* ~user (home folder of a user) * mv(movea fi_Ie/ folder to
— ¢ cd ~weesan another location. Used also for
renaming)
* What will “cd ~/weesan” do? — S mv foo bar

* mkdir (create a folder)
— S mkdir foo

Basic Commands (cont)

* df (Disk usage) Search a command or a file
— Sdf-h/
* which
— $du-sxh~/ — Swhichs
°* man (manual) e whereis
— Smanls — S whereis Is
— S man 2 mkdir e locate
— S$man man — Slocate stdio.h
— S man -k mkdir — S locate iostream
* Manpage sections * find
— 1 User-level cmds and apps — $find /| grep stdio.h
e /bin/mkdir — Sfind /usr/include | grep stdio.h

— 2 System calls
* int mkdir(const char *, ...);
— 3 Library calls
* int printf(const char *, ...); sequence
2. A\ key: to find previous command

3. [Ctl]+r key: to search previous command

Smarty:
1. [Tab] key: auto-complete the command

Editing a File: Vi/Vim

* 2 modes e Delete
— Input mode — dd (delete a line)
 ESC to back to cmmd mode — d10d (delete 10 lines)
— dS (delete till end of line)
— Command mode _ 4G (delete till end of file)
* Cursor movement — x (current char.)
— h(left), j (down), k (up), | (right) e Paste
— "M (page down)

— p (paste after)

— Ab
(page up) — P (paste before)

— A (first char.)

— S (last char)) * Undo
— G (bottom page) — u
— :1 (goto first line) e Search
e Swtch to input mode —/
— a(append) e Save/Quit
— i(insert) — w (write)
— o (insert line after ' _
— O (insert line before) — :q(quit)

— :wq (write and quit)
— :g! (give up changes)

C Hello World

vi hello.c

Switch to editing mode:ior a
Switching to control mode: ESC
Save a file: in control mode, :w
To quit, in control mode, :q

To quit without saving, :q!

Copy/paste a line: in control model, “yy” and then “p”, both from the current
cursor

— 5line: 5yy and then p
To delete a whole line, in control mode, : dd

#include <stdio.h>

E:s::g'z /* The simplest C Program */

gce hello.c —o hello int main(int argc, char **argv) {
Is printf(“Hello world\n”);

./hello

return 0;

C Syntax and Hello World

What do the < >

mean?

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{ <
printf(“Hello world!\n”);
return O;
<

Compiling/Building Process in C to
Generate Executables

* Compiling/Building process: gcc hello.c —o hello
— Constructing an executable image for an application
— FOUR stages

— Command:
gcc <options> <source_file.c>

* Compiler Tool
— gcc (GNU Compiler)
* man gcc (on Linux m/c)

— icc (Intel C compiler)

4 Stages of Compiling Process

1. Preprocessing (Those with # ...)
— Expansion of Header files (#include ...)
— Substitute macros and inline functions (#define ...)

2. Compilation (the most important one)
— Generates assembly language
— Verification of functions usage using prototypes
— Header files: Prototypes declaration (-1 option to provide header
folder)
3. Assembling
— Generates re-locatable object file (contains m/c instructions)

— nm app.o: To list functions/symbols provided by a an object file
0000000000000000 T main
U puts
— objdump to view object files and disassembly

4 Stages of Compiling Process (contd..)

4. Linking
— Generates executable file (nm tool used to view exe file)
— Binds appropriate libraries
e Static Linking
* Dynamic Linking (default)

* Loading and Execution (of an executable file)
— Evaluate size of code and data segment

— Allocates address space in the user mode and transfers them
into memory

— Load dependent libraries needed by program and links them
— Invokes Process Manager = Program registration

4 Stages of Compiling Process

View the output of each stage using vi editor: e.g. vim hello.i

gcc —E hello.c —o hello.i
hello.c = hello.i

gcc =S hello.i —o hello.s

gcc —c hello.s —o hello.o
gcc hello.o —o hello

Output = Executable (a.out)
Run = ./hello (Loader)

Compiling a C Program

®* gcc <options> program_name.c

* Options: \ Four stages into one

-Wall: Shows all warnings

-0 output_file_name: By default a.out executable file is
created when we compile our program with gcc. Instead,
we can specify the output file name using "-0" option.
-g: Include debugging information in the binary.

® man gcc

Linking multiple files to make executable file

* Two programs, progl.c and prog2.c for one single task
— To make single executable file using following instructions

First, compile these two files with option "-c"
gcc -c progl.c
gCC -C prog2.c

-c: Tells gcc to compile and assemble the code, but not link.
We get two files as output, progl.o and prog2.o

Then, we can link these object files into single executable file
using below instruction.

gcc -0 prog progl.o prog2.o

Now, the output is prog executable file.
We can run our program using

./prog

Linking with other libraries

* Normally, compiler will read/link libraries from /usr/lib
directory to our program during compilation process.

— Library are precompiled object files

* To link our programs with libraries like pthreads and
realtime libraries (rt library).
— gcc <options> program_name.c -lpthread -Irt

-Ipthread: Link with pthread library - libpthread.so file
-Irt: Link with rt library -2 librt.so file
Option here is "-Ilibrary>"

Another option "-L<dir>" used to tell gcc compiler search for
library file in given <dir> directory.

Compilation, Linking, Execution of C/C++ Programs

<

source
file 1

N——

<>

source
file 2

\:_/

linking
(relocation +
linking)

load
file

—P» compilation

<>
source
file N

N P

usually performed by a compiler, usually in one uninterrupted sequence

http://www.tenouk.com/ModuleW.html

Three Useful Commands
* nm:e.g. “nm a.out”, “nm libc.so”
— list symbols from object files

* Symbols: function name, global variables that are exposed or
reference by an object file.

* |dd: e.g. “Idd a.out”, or “Idd hello”

— List the name and the path of the dynamic library needed by a
program

— LD_LIBRARY_PATH: env for setting runtime lib path
» export LD_LIBRARY_PATH=/acct/yanyh/usr/lib:SLD_LIBRARY_PATH

* objdump: objdump —d a.out
— dump information about object files, including disassembly

21

sUum.cC

Download the file:
— wget https://passlab.github.io/CSCE569/resources/sum.c

gCC sum.C —O0 sum

./sum 102400 Or step by step
gcc -E sum.c -o sum.i

gcc -S sum.i -0 sum.s

visum.c gCC -C SUM.C -0 sum.o
ldd sum gCC SUM.0o -0 sum
nm sum

Other system commands:
— cat /proc/cpuinfo to show the CPU and #cores
— top command to show system usage and memory

Makefile

sum (exe)

/\

main.o

/

N\

main.c

sum.h

sum.o

/

N

sum.cC

sum.h

Makefile

sum: main.o sum.o

gCcc —O0 SUm main.o sum.o

main.o: main.c sum.h

gCcC —C main.c

sum.o: sum.c sum.h

£CC —C SuIm.cC

Rule syntax

main.o: main.c sum.h

<::fffifjnanmc
> Rule
VQ =

dependency action

cmake: Makefile/Build-System Generator

* Provides single-sourcing for build systems
* Knowledge of many platforms and tools
* Users configure builds through a GUI

>
)l

Sequential Memory Regions vs Multi-
dimensional Array

* Memory is a sequentially accessed using the address of
each byte/word

Memory

012 3

0001

0003
0004

1004
1005

WN—=+O

1009
1010

Vector/Matrix and Array in C

* C has row-major storage for multiple dimensional array
— A[2,2] is followed by A[2,3] Mermory

* 3-dimensional array
100]

— B

3

100]

char A[4][4] 15 A[3,3]
14 A[22]

0123 13 A[3.1]
12 A[2.0]
01 2]3 11 A[23]

10 A[2,2]

4 |S| 6|7 Al2,1]
Al2,0]

8 19 (10 {1 A[1,3]

A(1,2]
Al1,1]
A(1,0]
A[0,3]
A0,2]
A[0,1]
A[0,0]

WM =0

12113 114 |15

O =N W LN =) O

Memory address of A[2][3]

= A[0][0] + offset

= A + sizeof (char) * (2 * # columns + 3)
=0+1*(2*4+3)=11

28

Store Array in Memory in Row Major

8 | 6 | 5 | 4
2 1 9 7

3x4 matrix C array for matrix:

int A[3][4

i —— 31041
' Row-Major (Row Wise Arrangement) C storage type

| I Address of element A[1][2]?

8 6 5 4 2 1 9 7 3 6 4 2

Address of element A[1][2]?
= A +sizeof (int) * (1 * 4 + 2)
=A+4*6=A+24

29

Store Array in Memory in Column Major

8 | 6 | 5 | 4
2 1 9 7

3x4 matrix

30

For a Memory Region to Store Data for an Array
in Either Row or Col Major

3X4 . EEEEENEE
: . 2 1 9 7
Row-Major (Row Wise Arrangement)

3 6 4 2

3X4 EXNENERE
> 6 2 7 4

Column-Major (Column Wise Arrangement) 5 1 3

31

C Programming

32

Lexical Scoping

void p(char

{

char y;
char z;

}

char z;

void g(char

{

char b;

char c;

}

char d;

X)
/%
/%
/%
/%
/%
a)

/*

p,x */
p,X,y */
P,X,y,2z */
p */

p,z */

plZ’qlalb */

char b?

p,z,q,a,b,c */

legal?

/* p,z,q9,a,b,d (not c) */

}

/* p,z,q */

33

Comparison and Mathematical Operators

equal to
less than
less than or
greater than
greater than
not equal

&& logical and

b R T

logical or
logical not

plus &
minus |
mult A
divide ~
modulo <<

equal

or equal

bitwise and
bitwise or
bitwise xor
bitwise not
shift left
shift right

34

Assignment Operators

X =y assighy to x X += y assign (x+y) to x
X++ post-increment X X -=Yy assign (x-y) to x
++X pre-increment X X *= vy assign (x*y) to x
X-- post-decrement x X /=y assign (x/y) to x
--X pre-decrement x X %=y assign (x%y) to x

int x=5; int x=5;

int y; int y;

y = ++X; Yy = X++;

/* x == 6, y==6*/ /* X == 6, y==5*/

int x=5; int x=5;
if (x==6) /* false */ if (x=6) /* always true */
{ {
Y Y /* X is now 6 */
} }
/* x is still 5 */ /¥ ... %/

35

A Quick Digression About the Compiler

#include <stdio.h>

/¥ The simplest C Program */

int main(int argc, char **argv) PreproceSS
{
printf(“Hello world\n”);

return 0;

__extension__ typedef unsigned long long int
__dev_t;

__extension__ typedef wunsigned int __uid_t;
__extension__ typedef wunsigned int __gid_t;
__extension__ typedef unsigned long int
__1ino_t;

__extension__ typedef unsigned long long int
__ino64_t;

__extension__ typedef unsigned int
__nlink_t;

__extension__ typedef Tlong int __off_t;
__extension__ typedef Tlong long int
__off64_t;

extern void flockfile (FILE *__stream) ;
extern int ftrylockfile (FILE *__stream) ;
extern void funlockfile (FILE *__stream) ;
int main(int argc, char **argv)

{

printf(“Hello world\n”);

return O;

my_program
Compile 36

C Memory Pointers

* To discuss memory pointers, we need to talk a bit about the
concept of memory

* We'll conclude by touching on a couple of other C elements:
— Arrays, typedef, and structs

37

char
char [10]
int
float
int64_t

The “memory”

Addr | Value
0
1
2
3
4 |'H (72)
5 |'€(101)
6 |1(108)
7 |'T(108)
8 |0 (111)
9 |\n"(10)
10 | \O’ (0)
11
12

38

What is a Variable?

symbol table? |

Symbol | Addr| Value
0
1
2
declare vs. define 3
X 4 Some
h garbage
char x;)
char y—e : y/:v5 e’ (101)
t 6
[y 7
8
What names are legal? 9
10
extern? static? const? 11
39 12

Multi-byte Variables

char x;
char y=‘e’;
int z = 0x01020304;

]

[|

Symbol | Addr Value
0
1
2
3
X 4 Some garbage
y 3) ‘e’ (101)
6
7
Z 8 4
9 3
10 2
11 1
12

40

Memory, a more detailed view...

A sequential list of words, starting
from 0.

On 32bit architectures (e.g. Win32):
each word is 4 bytes.

Local variables are stored in the
stack

Dynamically allocated memory is set
aside on the heap (more on this
later...)

For multiple-byte variables, the
address is that of the smallest byte
(little endian).

0 word 0
4 word 1
8 word 2

»
Q)
(@)
>

41

Example

the size of char, of the variable or parenthesized type-specifier that it precedes.

NOTE: sizeof is a compile-time operator that returns the size, in multiples of L

Can a C function modify its arguments?

float p = 2.0;
/* p is 2.0 here */
pow_assign(p, 5);

/* Is p is 32.0 here ? */

void pow_assign(float x, uint exp)
{

float result=1.0;

int 1;

for (i=0; (i < exp); i++) {

result = result * Xx;
}
X = result;

}

float p = 2.0;
/* p is 2.0 here */
p = pow(p, 5);

/* pAs 32.0 here */

43

In C you can’t change the value of any variable passed as an
argument in a function call...

Pass by value

void pow_assign(float x, uint exp)
{

float result=1.0;

int i;

for (1=0; (i < exp); i++) {

result = result * x;
}
X

}

= result;

// a code snippet that uses above
// function
{
float p=2.0;
pow_assign(p, 5);
// the value of p is 2 here..
}

C Pointers

* What is a pointer?

— A variable that contains the memory address of another
variable or of a function

* |In general, it is safe to assume that on 32 bit

architectures pointers occupy one word

— Pointers to int, char, float, void, etc. (“int*”, “char*”, “*float”,
“void*”), they all occupy 4 bytes (one word).

* Pointers: *very* many bugs in C programs are traced
back to mishandling of pointers...

45

Pointers (cont.)

* The need for pointers

— Needed when you want to modify a variable (its value) inside a
function
* The pointer is passed to that function as an argument

— Passing large objects to functions without the overhead of
copying them first

— Accessing memory allocated on the heap

— Referring to functions, i.e. function pointers

46

Pointer Validity

char * get_pointer(Q

char x=0;
return &x;
}
{

char * ptr = get_pointer(Q;
ptr = 12; / valid? */
}

Answer: No, it’s invalid...

char * get_pointer()
{

char x=0;

return &x;

}

int main(Q

{
char * ptr = get_pointer(Q);
ptr = 12; / valid? */
other_function();
return O;

Here is what | get in DevStudio when compiling:
main.cpp(6) : warning C4172: returning address of local variable or temporary

Example: What gets printed out?

+3 +2 +1 +0

900
904

908
912

916

920
924

* NOTE: Here &d =920 (in practice a 4- 928
byte hex number such as 0x22FC3A08)

932

936
940

49

Example:

Usage of Pointers & Pointer Arithmetic

+3

+2

+1

Q: What are the values stored in arr? [assume little endian architecture]

920
924

928
932

936
940
944

50

Example [Cntd.]

Question: arr[0] = ?

+3

+2

51

Use of pointers, another example...

* Pass pointer parameters into function

e What will happen here?

52

Dynamic Memory Allocation (on the Heap)

* Allows the program to determine how much memory it
needs at run time and to allocate exactly the right
amount of storage.

— It is your responsibility to clean up after you (free the dynamic
memory you allocated)

* The region of memory where dynamic allocation and
deallocation of memory can take place is called the
heap.

53

Recall Discussion on
Dynamic Memory Allocation

{

int * alloc_ints(size_t requested_count)
pig_array o Cint -

big_array = (int *)calloc(requested_count, sizeof(int));
if (big_array == NULL) {
printf(“can’t allocate %d ints: %m\n”, requested_count);
return NULL;

}

/* big_array[0] through big_array[requested_count-1] are
* valid and zeroed. */

return big_array; <«

Caveats with Dynamic Memory

Data Structures

* A data structure is a collection of one or more variables,
possibly of different types.

* An example of student record

56

Data Structures (cont.)

* A data structure is also a data type

* Accessing a field inside a data structure

57

Data Structures (cont.)

* Allocating a data structure instance

This is a new type now

* IMPORTANT:

— Never calculate the size of a data structure yourself. Rely on
the sizeof() function

— Example: Because of memory padding, the size of “struct
StudRecord” is 64 (instead of 62 as one might estimate)

58

The “typedef” Construct

Using typedef to _

improve readability...

59

Arrays

/* define an array of 10 chars */
char x[5] = {‘t’,’e’,’s’,’t’,’\0’};

/* access element 0, change its value */
x[0] = ‘T’; <

/* pointer arithmetic to get elt 3 */
char el1t3 = *(x+3); /* x[3] */ <

/* x[0] evaluates to the first element; Symbol Addr Value
* x evaluates to the address of the
* first element, or &(x[0]1) */ char x [0] 100 ‘v
/* 0-indexed for loop idiom */ char x [1] 101 e
#define COUNT 10 char x [2] 102 ‘g’
char y[COUNT];
int i; char x [3] 103 ‘t
for (i=0; i<COUNT; i++) { any
/* process y[i] */ char x [4] 104 \O
printf(“%c\n”, y[il);
} Q: What'’s the difference
between “char x[5]” and a
declaration like “char *x"? 60

How to Parse and Define C Types

int x; int; typedef int T;
int *x; /* pointer to 1int; */ typedef int *T;
int x[10]; /* array of 1ints; */ +typedef int T[10];
int *x[10]; /* array of pointers to 1int; */ typedef int *T[10];
int (*x)[10]; /* pointer to array of 1ints; typedef int (*T)[10];
X 1is
m an array of
pointers to _
int *x[10]; int Arrays are the primary
source of confusion. When
int (*X) [10]: S in doubt, use extra parens to
? a pointer to clarify the expression.
an array of
int

Function Types

void gsort(void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

/* function matching this type: */
int cmp_function(const void *x, const void *y);

/* typedef defining this type: */
typedef int (*cmp_type) (const void *, const void *);

/* rewrite gsort prototype using our typedef */
void gsort(void *base, size_t nmemb, size_t size, cmp_type compar);

62

References

Linux/Unix Introduction
— http://www.ee.surrey.ac.uk/Teaching/Unix/

VI Editor
— https://www.cs.colostate.edu/helpdocs/vi.html

C Programming Tutorial
— http://www.cprogramming.com/tutorial/c-tutorial.html

Compiler, Assembler, Linker and Loader: A Brief Story
— http://www.tenouk.com/ModuleW.html

63

