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Abstract
Before embarking on data collection, researchers typically compute how many individual 
observations they should do. This is vital for doing studies with sufficient statistical power, and 
often a cornerstone in study pre-registrations and grant applications. For traditional statistical tests, 
one would typically determine an acceptable level of statistical power, (gu)estimate effect size, and 
then use both values to compute the required sample size. However, for analyses that identify 
subgroups, statistical power is harder to establish. Once sample size reaches a sufficient threshold, 
effect size is primarily determined by the number of measured features and the underlying subgroup
separation. As a consequence, a priory computations of statistical power are notoriously complex. 
In this tutorial, I will provide a roadmap to determining sample size and effect size for analyses that 
identify subgroups. First, I introduce a procedure that allows researchers to formalise their 
expectations about effect sizes in their domain of choice, and use this to compute the minimally 
required number of measured variables. Next, I outline how to establish the minimum sample size 
in subgroup analyses. Finally, I use simulations to provide a reference table for the most popular 
subgroup analyses: k-means, Ward agglomerative hierarchical clustering, c-means fuzzy clustering, 
latent class analysis, latent profile analysis, and Gaussian mixture modelling. The table shows the 
minimum numbers of observations per expected subgroup (sample size) and features (measured 
variables) to achieve acceptable statistical power, and can be readily used in study design.

Keywords
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analysis
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Introduction
Many interesting research questions relate to identifying distinct subgroups within a larger dataset. 
For example, subgroup analyses can be used to describe areas of methane emissions (Malone et al., 
2022), chemical concentrations in waters (Li et al., 2022), energy consumption in buildings (Díaz 
Redondo et al., 2020), jobs on high-performance computing systems (Halawa et al., 2020), glacier 
zones (Barzycka et al., 2023), Mediterranean dust events (Nissenbaum et al., 2023), microbial 
networks (Favila et al., 2022), and riverbed types (Kwon et al., 2023). In medical research, 
subgroup analyses have been used to identify risk factors for hospitalisation from clinical notes 
(Song et al., 2023), ways to provide informational and emotional patient support (Duimel et al., 
2022); or to uncover clinically meaningful patient profiles in bipolar personality disorder (Wolf et 
al., 2023), compulsive behaviour (Den Ouden et al., 2022), low back pain (Wilson et al., 2023), 
polycystic ovary syndrome (Kiconco et al., 2023), or vasculitis (Lee et al., 2023). In cognitive and 
behavioural sciences, subgroup analyses are rapidly gaining in popularity compared to traditional 
statistical tests (Figure 1, using bibliobanana by Dalmaijer, Van Rheede, et al., 2021). They have 
been used to describe distinct types of dietary patterns (Hennessy et al., 2023), executive function 
difficulties (Bathelt et al., 2018), individuals with autism (Parlett-Pelleriti et al., 2022), intimate 
partner violence (Alexander & Johnson, 2023), resilience to socio-economic disadvantage 
(Dalmaijer, Gibbons, et al., 2021), responses to cognitive training (Rennie et al., 2019), search 
organisation (Benjamins et al., 2019), and self-harm (Uh et al., 2021).

While the above all seems rather promising, subgroup analyses are not always appropriately 
applied. A major issue is that many studies fail to test against a one-group solution (Toffalini et al., 
2022). In addition, subgroup analyses within the same domain frequently show inconsistent findings
(Alexander & Johnson, 2023; Stein & Bomyea, 2023), and this is likely due to under-addressed 
methodological and statistical limitations.

Some go so far as to suggest subgroup analysis should not be used in psychological research
(Toffalini et al., 2022). Others outline the conditions in which subgroup analyses can be appropriate 
(Dalmaijer et al., 2020, 2022), and provide detailed guidelines on recommended workflows and 
common issues (Gao et al., 2023).

Many of the highlighted problems come from researchers’ lack of familiarity with the 
unintuitive statistical properties of subgroup analyses. Like traditional tests, their statistical power is
determined by sample size and effect size (Dalmaijer et al., 2020, 2022). However, unlike 
traditional tests, effect size (and thus power) accumulates over measured variables (Dalmaijer et al., 
2020, 2022). In theory, this complexity renders it difficult to compute statistical power for subgroup
analyses, and one could even consider it inappropriate to even attempt a power analysis for such an 
exploratory tool (Gao et al., 2023). However, in practice, countless papers have reported findings 
from underpowered analyses that are likely to be false positives (Toffalini et al., 2022). This issue 
could have been avoided if researchers had the tools to estimate power before touching any data.

In this tutorial, I outline a method to establish the required number of observations (sample 
size) and features (number of measured variables) a priori for popular subgroup analyses. These 
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include k-means clustering, agglomerative hierarchical clustering with Ward linkage, c-means fuzzy
clustering, latent class analysis, latent profile analysis, and Gaussian mixture modelling. My goal is 
to encourage researchers to consider statistical power before they start new data collection or 
secondary data processing, and to give them the tools to determine whether subgroup analyses 
would be appropriate for their data.

Figure 1. The number of papers in journals indexed by PubMed that referenced a specific subgroup
analysis, relative to the number of papers that referenced “t-test”. This comparison shows that 
subgroup analyses have steadily gained in relative popularity (compared to traditional tests) since 
the year 2000, and an steeper increase since 2015. Plot generated using bibliobana (Dalmaijer, Van
Rheede, et al., 2021).

What is statistical power in subgroup analyses?
In a frequentist framework, “power” refers to the probability that a test can detect a true positive. In 
simulations, it can be computed as the proportion of tests that result in a statistically significant 
result when a real effect was introduced. In subgroup analyses, power is a more elusive concept. 
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Where a traditional test offers a binary decision on there being an effect, a subgroup analysis offers 
much more information, including how many subgroups are present, and which observations belong
to which subgroup. However, its central question can be reduced to a binary decision: Are any 
subgroups present in this data? The null hypothesis here is that all observations belong to a single 
group. Statistical power for subgroup analyses can thus be expressed as the probability of the 
single-group null hypothesis being correctly rejected. (Dalmaijer et al., 2020, 2022)

In simulations, statistical power can be estimated by generating two (or more) groups of 
data, employing a subgroup analysis, and then evaluating its outcome. Outcome evaluation entails 
computing the silhouette score (Rousseeuw, 1987) or its extension for probabilistic group 
membership (Campello & Hruschka, 2006), with scores over 0.5 rejecting the single-group null 
hypothesis. Power is then computed as the proportion of simulation runs that result in a silhouette 
score of 0.5 or higher.

Alternatives to subgroup evaluation with silhouette scores?

The silhouette score is not the only evaluation metric. However, it performs well compared to other 
validation indices across a wide variety of simulated and real datasets (Arbelaitz et al., 2013), even 
if it has some weaknesses for distributions with atypical shapes (Batool & Hennig, 2021).

Data in cognitive and behavioural research typically comprises partially overlapping normal 
distributions, and in this context evaluation with silhouette scores was without false positives in 
simulated single-group data, and with high accuracy in simulated multi-group data (Dalmaijer et al.,
2020, 2022). Not all evaluation metrics are designed for this type of data; for example, the popular 
“gap statistic” is explicitly not intended to be used with overlapping groups (Tibshirani et al., 2001).
This renders it, and methods that average across a variety of evaluation metrics (not all of which 
will be appropriate), unsuitable for our purposes.

Some subgroup analyses (e.g. mixture modelling) lend themselves to computing a goodness 
of fit (e.g. Bayesian Information Criterion) of a single-group null model, and comparing it with fits 
of multi-group models. While this could also support a binary rejection of the single-group null 
hypothesis, the beauty of this approach is that it offers a more continuous measure of evidence. This
does not mean Bayesian evaluation is the most sensitive: In simulations with 1 to 4 subgroups 
(multivariate normal distributions with partial overlap), the thresholding of silhouette scores proved 
to be more accurate than the goodness-of-fit approach for detecting more than 2 subgroups with 
Gaussian mixture modelling without costing additional false positives (Dalmaijer et al., 2022).

In sum, the silhouette score has desirable properties in an evaluation metric. It can be 
computed for many (if not all) types of subgroup analyses, it works comparatively well in a wide 
variety of datasets, and its behaviour is well described for multivariate normal distributions with 
partial overlap (i.e. realistic data in cognitive and behavioural research).
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Estimating subgroup effect size
In a test of differences between two unrelated samples, effect size can be computed as the difference
between the groups’ means in standardised space (when the pooled standard deviation is equal to 1).
Readers might recognise this as Cohen’s d, and typical interpretations suggest that effects are very 
small at 0.01, small at 0.2, medium at 0.5, large at 0.8, very large at 1.2, and huge at 2.0  
(Sawilowsky, 2009). Effect sizes for such differences will be referred to as δ.

The effect size in subgroup analyses can be defined as the distance between subgroup 
centroids. The higher this distance, the easier to identify each subgroup. When there are more than 
two subgroups, the lowest centroid distance determines how separable all subgroups are. Centroid 
distance is the effect size for subgroup analyses, and will be referred to as Δ.

The distance between centroids can be computed as the Euclidean distance between groups 
in standardised space (with feature variances of 1). This reflects an accumulation over differences 
between subgroups within each variable, and can be computed with Equation 1 (Dalmaijer et al., 
2020, 2022).

(1) Δ=√∑
i=1

p

δi
2

where Δ is the centroid distance (subgroup effect size), p is the number of features (measured 
variables), and δi is the difference effect size for feature i.

Underlying (within-feature) effect size distributions

While it is now possible to compute the subgroup effect size, the underlying effect sizes for each 
measured variable still need to be estimated. In a power analysis for a single difference, researchers 
typically turn to the published literature to estimate an effect size from previous studies or meta-
analyses, where possible with a correction for publication (Van Aert & Van Assen, 2018) and 
outcome reporting bias (Van Aert & Wicherts, 2023). Ideally, one would do the same for each 
feature in a subgroup analysis, although it is unfeasible to do so for a large number of variables. 
Another obstacle is that it is typically unclear which subgroups are present in a population before a 
subgroup analysis is done, which makes it impossible to estimate any single underlying effect size.

While it may be impossible to estimate effect sizes within each measured variable, the 
distribution of effect sizes within a field of study can be established empirically: Szucs and 
Ioannidis (2017) extracted 26841 reported statistics from 3801 papers in cognitive neuroscience and
psychology. Out of these, 17207 were “statistically significant” with an average effect size of 
δ=0.932, and 9634 were non-significant with an average δ=0.237, for a grand average of δ=0.683. 
The distribution of effect sizes was roughly exponential, with more papers finding smaller effects. 
The probability density of effect sizes can thus be approximated with Equation 2.
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(2) f (δ ,λ)=λ e−λδ

where δ is an effect size for a difference, and λ is the exponential rate parameter.

The mean of an exponential distribution is given by the reciprocal of its λ parameter 
(Equation 3). Assuming the underlying effect size distribution is indeed exponential, λ can thus be 
estimated as the reciprocal of the grand mean from Szucs and Ioannidis (2017): 1 / 0.683 = 1.464 ≈ 
1.5 (rounded).

(3) E [δ]=
1
λ

where E[δ] is the mean effect size, and λ is the exponential rate parameter.

Estimating centroid separation (subgroup effect size)

The expected value for centroid separation (i.e. subgroup effect size) can be directly estimated by 
combining Equations 1 and 3. This offers researchers the opportunity to estimate subgroup effect 
size from the number of features (measured variables) included in the analysis and the anticipated λ 
parameter for the underlying effect size distribution (Equation 4).

(4) Δ̂=√ p ( 1
λ )

2

where  Δ (hat) is the estimated subgroup effect size, p is the number of features included in a 
subgroup analysis, and λ is the exponential rate parameter.

Choosing a λ value for subgroup effect size estimation

The span of published effect sizes is substantial, and includes very large (δ=1.2) to huge (δ=2) 
effects (Szucs & Ioannidis, 2017). These are not impossibly large effects. For example, the 
difference in average height between men (M=174.91 cm, SD=2.51, n=5153) and women 
(M=162.03 cm, SD=2.37, n=5763) in the Finnish Twin Cohort Study amounts to an effect size of 
around δ=5 (Silventoinen et al., 2000). However, they are implausible effect sizes due to the 
abundance of studies with small sample sizes in the literature (Szucs & Ioannidis, 2017). By 
definition, these only have power to detect large effects, and paired with file-drawers full of null 

7



CLUSTER ANALYSIS SAMPLE SIZE AND POWER TUTORIAL

results (Rosenthal, 1979) and publication bias (Smart, 1964), this has likely inflated reported effects
sizes (Szucs & Ioannidis, 2017).

To account for this inflation, low effect sizes can be upweighted by increasing the magnitude
of the λ parameter. Here, I used the particularly optimistic value of λ=0.75, which should only be 
used when many substantial effects are anticipated (e.g. data from entirely different animal or plant 
species). I also used λ=1.5 to match effect sizes published in psychological literature (Szucs & 
Ioannidis, 2017), λ=3 to only include up to very large effects, λ=6 to only include up to large 
effects, and λ=12 to only include up to medium effects (Figure 2).

Figure 2. Subgroup effect size as an accumulation of underlying effect sizes in different contexts. 
The left panel shows the probability densities (y-axis) as a function of effect sizes (difference 
between subgroups within a single feature) in five different contexts. The right panel shows 
estimated centroid separation (subgroup effect size) as an accumulation of single-feature effect 
sizes over features (x-axis, log-scaled). Effect size contexts ranged from highly liberal (lighter 
colours) to highly conservative (darker colours). Where they cross the dotted line reveals the 
number of features required to achieve an estimated subgroup effect size of Δ=4, which should 
typically offer sufficient statistical power to detect subgroups with k-means, c-means, HDBSCAN, 
or Gaussian mixture modelling (Dalmaijer et al., 2020, 2022). The main message of this figure is 
that many variables (500-2500) need to be included in context that are biased towards small effects.

Estimating the minimum number of variables

With Equation 4, the centroid separation (subgroup effect size) can be estimated from the λ 
parameter of the underlying effect size distribution and the number of features included in an 
analysis. The λ parameter should be chosen on the basis of a datasets origin (see previous heading), 
but how to estimate the anticipated centroid separation or the required number of features is yet 
undiscussed. Choosing either parameter depends on whether data has already been collected.

If data has already been collected (e.g. when doing secondary data analysis), researchers can
do a sensitivity analysis by using their chosen λ value and the number of features they can include 
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(i.e. the number of useable variables in the dataset). Using Equation 4, this offers them an estimated
value of subgroup effect size Δ. By comparing this estimate with existing power computations for 
subgroup analyses published by Dalmaijer and colleagues (2020, 2022). The general 
recommendation here is that Δ>4 should provide sufficient power to detect subgroups with k-means
clustering, and Δ>3 could be enough when using c-means or Gaussian mixture modelling are used 
(both assume multi-dimensional scaling is employed as a pre-processing step).

If data is yet to be collected, the number of variables to measure is undecided. The logic 
from the previous paragraph can be reversed: first a value of Δ for sufficient statistical power can be
chosen, e.g. Δ=4. Next, the minimum number of variables that should be included can be estimated 
by solving Equation 4 for the chosen Δ, which results in Equation 5.

(5) p= Δ
2

( 1
λ )

2

where p is the number of features that should be included in a subgroup analysis,  Δ is the required 
subgroup effect size, and λ is the anticipated exponential rate parameter.

Dimensionality reduction

When performing a subgroup analysis on a dataset with many features, the “curse of 
dimensionality” can reduce performance even if a large distance between centroids exists. One way 
to combat this is by employing a dimensionality reduction algorithm to project high-dimensional 
data into a low-dimensional representation that can then be used in a subgroup analysis. An 
additional benefit of this approach is that multi-dimensional scaling can help increase centroid 
distances (Dalmaijer et al., 2020, 2022).

Dimensionality reduction algorithms for continuous data typically work by aiming to find a 
low-dimensionality representation in which relative distances between individual observations are 
analogous to those in the original data. These algorithms are unsuitable for categorical data, where 
the concept of “distance” does not apply in the same way. Dimensionality reduction can still be 
achieved to some extent by recoding categorical data into binary dummy variables (also know as 
“one hot encoding” in the machine-learning literature), which can then be reduced using 
“sketching” algorithms (Bera et al., 2023; Mitzenmacher et al., 2014).

Care should be taken in selecting a dimensionality reduction algorithm. For example, multi-
dimensional scaling is computationally expensive and takes significant time on large datasets. 
Principal component analysis can be a faster alternative, but is more sensitive to covariance 
between features, particularly when underlying effect sizes are small (Figure 3). This can reduce 
centroid distances and thus hamper subgroup separability, especially in environments where within-
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variable differences are small and variables are likely to be correlated (e.g. in psychological and 
medical research).

Figure 3. Distance (Δ, y-axis) between centroids computed before dimensionality reduction (left 
column), and after multi-dimensional scaling (MDS, middle column) or principal component 
analysis (PCA, right column) on correlated (top row) and independent (bottom row) features for 
different numbers of features (p, x-axis). Lighter colours indicate more optimistic effect size 
distributions (see Figure 2 for exact distributions). Solid lines are averages with shaded areas 
reflecting standard deviations across 10 simulations.

Estimating sample size
Previous work suggests that when centroid separation is sufficient, the required sample size 
asymptotes at around n=30 per subgroup (Dalmaijer et al., 2020, 2022). Other recommendations 
suggest that the total sample size should be 70 times the number of features (Dolnicar et al., 2014); 
or even that the number of observations should be at least 2p, where p is the number of features 
(typically attributed to Formann, 1984). These recommendations vary substantially, and this will be 
addressed shortly.

How large the total sample should be depends on how many subgroups are hypothesised to 
exist, and what each subgroup’s relative size is. For example, if three equally sized subgroups are 
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hypothesised to exist, the total sample size would be 3*30 = 90. If two subgroups are hypothesised, 
but only 10% of the target population is expected to be a member of one of the subgroups, then at 
least 300 observations should be included (so that 10% of the sample results in n=30 for the smaller
subgroup).

Further to the above, the preferred sample size depends on the number of included features. 
Two of the aforementioned recommendations are to increase the sample size as a function of the 
number of included features. According to these guidelines, inclusion of 100 features should require
a sample size of 70*100 = 7000 or of 2100 = 1.27e30. These numbers are on entirely different orders 
of magnitude. The latter estimate is also impracticable: at the time of writing, the world population 
is estimated to be only 8e12 (United Nations, 2022), 1.58e17 times smaller than the intended 
sample size.

To address the issue of conflicting guidelines, I ran simulations that included N=30 to 
N=5000 per subgroup in various underlying effect size contexts. The results are covered in detail in 
the next section, but in short they suggest that while sample size should scale with the expected 
underlying effect size distribution, it can also be somewhat compensated by the number of features 
included in an analysis. This means that including more measured variables can actually reduce the 
sample size demands of a subgroup analysis.

Reference table for popular analyses
To provide rough estimates for the required sample size and number of measured variables, I ran 
simulations with varying numbers of observations and features in different contexts of underlying 
effect sizes. Each simulated dataset was subjected to subgroup analyses k-means clustering, 
agglomerative hierarchical clustering with Ward linkage, c-means fuzzy clustering, latent profile 
analysis, and Gaussian mixture modelling. Categorical data was also simulated, and processed with 
latent class analysis. (Some of these analyses are mostly the same; see next section.)

Table 1 shows that the required numbers of observations and features increase as a function 
of the effect size context. Researchers who are planning a subgroup analysis in an environment with
small underlying effect sizes should thus plan to employ a large sample size and to measure many 
variables. Where this is not possible, they should reconsider doing a subgroup analysis.

Note that the table offers rough estimates. Higher precision estimates would be derived from
running simulations specific to planned pipelines, including preprocessing, dimensionality 
reduction, and the subgroup analysis of choice.
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Table 1
This table offers rough estimates for the minimal sample size per expected group (n) and number of 
measured variables (p) for several popular subgroup analyses. The estimations were derived from 
simulations in five different distribution of underlying effect sizes (reflected by λ parameter). The 
“Published in psychology” column refers to the distribution of effect sizes observed in psychology-
focussed journals (Szucs & Ioannidis, 2017). Columns are organised from most optimistic to most 
conservative, with λ reflecting the degree of weight towards null effects (see also Figure 2). 
Simulated data comprised uncorrelated variables that were projected into two dimensions using 
PCA (chosen for computational efficiency; not a preprocessing recommendation, see also Figure 
3). Two options are given per row, one prioritising fewer features (top), and another prioritising 
fewer observations (bottom). Where the table states “No detection”, subgroup analyses could not 
reliably identify the true two-subgroup solution over a single-group null model.

Wildly 
optimistic
(λ=0.75)

Published in 
psychology
(λ=1.5)

No to very 
large effects
(λ=3.0)

No to large 
effects
(λ=6.0)

No to medium 
effects
(λ=12)

K-means n=75, p=9
n=30, p=14

n=30, p=36
n=30, p=56

n=100, p=144
n=30, p=225

n=750, p=324
n=200, p=576

n=2000, p=1296
n=500, p=2304

Ward 
(agglomerative
hierarchical 
clustering)

n=75, p=9
n=30, p=14

n=30, p=36
n=30, p=56

n=100, p=144
n=30, p=225

n=200, p=576
n=100, p=900

n=5000, p=1296
n=500, p=2304

C-means 
(fuzzy 
clustering)

n=50, p=9
n=30, p=14

n=100, p=20
n=30, p=36

n=100, p=81
n=30, p=144

n=500, p=324
n=100, p=576

n=1000, p=1296
n=500, p=2304

Latent class 
analysis

n=50, p=9
n=30, p=14

n=150, p=20
n=100, p=36

No detection No detection No detection

Latent profile 
analysis

n=50, p=9
n=30, p=14

n=30, p=36
n=30, p=56

n=150, p=81
n=50, p=144

n=500, p=324
n=200, p=576

n=1000, p=1296
n=500, p=2304

Gaussian 
mixture 
modelling

n=75, p=9
n=30, p=14

n=30, p=36
n=30, p=56

n=50, p=144
n=30, p=225

n=500, p=324
n=200, p=576

n=1500, p=1296
n=500, p=2304

Note: the n values in this table are per subgroup, so the total sample size should be a multiple of 
the suggested values. For example, if three equally sized subgroups are expected, the planned 
sample size should be 3*n. If two subgroups are expected, with one being four times smaller than 
the other (i.e. an 80-20% divide of the population), the total sample size would be 4*n+n.

Simulation details

Simulated datasets comprised two equally sized subgroups, each represented by multivariate normal
distributions. Effect sizes were drawn from exponential distributions with λ parameters of 0.75, 1.5, 
3.0, 6.0, or 12.0 to match the distributions from Figures 2 and 3. For improved computational 
efficiency, features were uncorrelated and reduced through principal component analysis. These are 
not recommended assumptions or approaches, but chosen here only because they save on 
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computing time by avoiding searches for positive-definite covariance matrices and dimensionality 
reduction through multi-dimensional scaling. For an idea of how feature correlations and 
dimensionality reduction algorithms impact subgroup analyses, see Figure 3 and Dalmaijer et al. 
(2022).

Feature numbers (p) were chosen for subgroup effect sizes Δ=3, Δ=4, or Δ=5, using 
Equation 5. Sample sizes were run from n=30 to n=5000 per subgroup, resulting in N=60 to 
N=10000 for the full sample (comprising two subgroups). For each included combination of n and 
p, 50 simulations were run. In each of these, one dataset was generated, and subjected to the 
following subgroup analyses.

The k-means clustering algorithm iteratively moves k centroids until a stable solution is 
reached. In each iteration, observations are assigned to their closest centroid, and new centroids are 
defined as the average location of all their assigned observations (Lloyd, 1982).

In agglomerative hierarchical clustering, observations are joined as a function of their 
similarity. Similarity is typically defined by a distance metric (here Euclidean, but city block or 
cosine are also used), and compared against a linkage criterion. A commonly used criterion is Ward 
linkage, which minimises the increase in variance when observations are linked (Ward, 1963). The 
result is a hierarchy of solutions on the bottom of which each observation is its own cluster, and at 
the top of which all observations are part of the same cluster. Like for k-means, the accepted 
number of clusters is user-defined, or chosen as the solution with the highest silhouette score.

The c-means fuzzy clustering algorithm operates in much the same way as k-means, with 
one major difference: cluster membership is not binary. Instead, each observation is assigned a 
degree of belonging to each cluster (Bezdek, 1981; Dunn, 1973; Ross, 2010).

Latent class analysis is a latent mixture modelling approach in which predictors are binary 
(Bernoulli) or categorical (generalised Bernoulli or multinoulli) variables (Ferguson et al., 2020). 
Confusingly, the term “latent class analysis” has also been used to describe mixture modelling 
approaches more generally in the literature.

Latent profile analysis is a latent mixture modelling approach in which predictors are 
continuous variables that are assumed to be independent (Ferguson et al., 2020; Sterba, 2013). As 
with latent class analysis, the term “latent profile analysis” is also frequently used to describe 
mixture modelling more generally.

Gaussian mixture modelling is a latent mixture modelling approach in which predictors are 
continuous, and covariance structures can vary between subgroups. Here, all groups are allowed 
their own covariance structure. An alternative approach is to fit a single covariance matrix across all
subgroups, which could help prevent over-fitting. Within mixture modelling approaches, the 
probability that an observation belongs to each cluster can be computed (analogous to fuzzy 
clustering).

For each subgroup analysis outside of latent class analysis, silhouette (Rousseeuw, 1987) or 
fuzzy silhouette (Campello & Hruschka, 2006) scores were computed. Power was then computed as
the proportion of subgroup analysis that correctly rejected the single-group null hypothesis, i.e. the 
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proportion of silhouette scores of 0.5 and over. Reported values for the required number of 
observations per subgroup and included features are for when analyses reached 90% power (45/50 
simulations).

For latent class analysis, categorical values were simulated and then directly analysed via 
StepMix (Morin et al., 2023) without dimensionality reduction. This is because while it is possible 
to reduce categorical data, distances between observations are of a different quality and not always 
retained (Bera et al., 2023). Because silhouette scores operate on the same distance metric, their 
meaning is also hampered. In order to provide a fairer comparison, goodness of fit was computed 
for a null model (one group) and an alternative model (two subgroups). The two Bayesian 
Information Criteria were combined into a single Bayes Factor (Wagenmakers, 2007), for which 
values over 3 were taken as evidence for the two-subgroup model over the single-group null model.

Simulations were coded in Python version 3.8.10 (for a tutorial, see Dalmaijer, 2017), using 
NumPy version 1.22.3 (Harris et al., 2020), SciPy version 1.8.0 (Virtanen et al., 2020), scikit-learn 
version 1.1.0 (Pedregosa et al., 2011), scikit-fuzzy version 0.4.2, StepMix version 2.1.1 (Morin et 
al., 2023), the Intel extension for scikit-learn version 2023.2.1, and Matplotlib version 3.5.2 
(Hunter, 2007). Code and generated data are freely available via GitHub: 
https://github.com/esdalmaijer/cluster_power_tutorial

Conclusion
Before embarking on a subgroup analysis, researchers must choose how many observations (sample
size) and features (measured variables) to include. The statistical power of subgroup analyses 
depends on subgroup effect size, which is quantified as the distance between subgroup centroids in 
standardised space. Without sufficient separation, subgroups cannot be detected. Centroid 
separation accumulates over measured variables, with small differences between subgroups within 
each variable determining centroid separation in multi-dimensional space. The effect sizes of these 
underlying differences can be modelled as an exponential distribution, with a λ parameter estimated 
from the existing literature. Researchers can use this approach via the following workflow:

1. Choose the preferred subgroup analysis pipeline. This typically includes preprocessing, a 
dimensionality reduction algorithm, and a cluster analysis or mixture model.

2. Choose the subgroup effect size that should be minimally attained. For most approaches, 
this will be around Δ=4, but for some it might be as low as Δ=3 (e.g. c-means and mixture 
modelling).

3. Choose the expected underlying effect size distribution. This is an exponential distribution 
biased towards 0, with the degree of null bias determined by the λ parameter. (Empirical 
estimates put at λ at 1.5 in the psychological literature, but this is likely an under-estimation. 
A safer choice is λ=3 at a minimum.)
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4. Estimate the required number of features using the chosen subgroup effect size (Δ) and 
underlying effect size distribution parameter (λ) in Equation 5.

5. Simulate multivariate normal distributions with the computed number of variables, draw 
underlying effect sizes from an exponential distribution with the chosen λ parameter to 
introduce a difference between two groups, subject simulated datasets to the chosen 
dimensionality reduction and subgroup analysis, and compute the solutions’ silhouette 
scores. Increase the simulated number of participants until a high proportion (towards 1) of 
simulations results in a sufficient silhouette score (0.5 or over). The resulting number is the 
sample size for two equally sized subgroups; convert this to the total sample size using the 
number of subgroups hypothesised to exist in the data.

6. If the number of features is higher than the number of variables that can feasibly be 
collected (for new data) or that has already been collected (for secondary data), then 
subgroup analysis might not be a suitable approach.

Alternatively, researchers could use Table 1 for coarse estimates of the required number of 
observations per subgroup and the required number of features. This can be used as a first-pass on 
whether or not subgroup analysis is a feasible approach, i.e. whether the required sample size and 
number of measured variables are attainable in new data or present in existing data.
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