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Abstract

We have developed a fully numerical method for calculat-
ing the response of the Hartree-Fock orbitals to an external
electric field. The Hartree-Fock orbitals are optimized by
iterative numerical integration of the Helmholtz kernel. The
orbital response is obtained analogously by iterative numer-
ical integration of the Helmholtz kernel of the Sternheimer
equation. The orbitals are expanded in atom-centered func-
tions (bubbles) consisting of numerical radial functions mul-
tiplied by spherical harmonics. The remainder, i.e., the dif-
ference between the bubbles expansion and the exact or-
bitals, is expanded in numerical tensorial local basis func-
tions on a three-dimensional grid (cube). The methods have
been tested by calculating polarizabilities for He, H2, and
NH3 that are compared to literature values.

1 Introduction

The paper ”Linear and nonlinear response functions for an
exact state and for an MCSCF state” by Jeppe Olsen and
Poul Jørgensen was the beginning of modern analytical re-
sponse theory that is used for calculating a variety of time-
dependent and time-independent second- and higher-order
molecular properties using linear, quadratic and cubic re-
sponse functions.1 They developed the response theory for
exact wave functions and showed how response theory can
be efficiently employed in studies at multiconfiguration self-
consistent field (MCSCF) levels of theory, which was at that
time the state-of-the-art ab initio electron correlation level
of theory. The paper has been cited about 1000 times be-
cause it is the starting point in the derivation and imple-
mentation of response theory at many levels of theory. Mod-
ern response approaches based on the article by Olsen and
Jørgensen are discussed in a comprehensive book by Nor-
man, Ruud and Saue.2

In this work, we have developed a fully numerical method
to solving linear response equations by extending our bub-
bles and cube approach. We demonstrate the approach
by calculating the polarizability of small molecules at the
Hartree-Fock level of theory. The calculations are performed
in the limit of complete basis sets. The complete basis-set
limit is reached by expanding orbitals, potentials and various
auxiliary functions in a dual basis consisting of one-center
functions at the nuclei and in a numerical basis on a three-
dimensional (3D) equidistant Cartesian grid (cube), which

is divided into elements of equal size. In each element, the
3D functions are expanded in a local basis consisting of the
outer product of sixth-order Lagrange interpolation polyno-
mials in the three Cartesian directions.

The one-center functions (bubbles) are expressed using ra-
dial functions multiplied with spherical harmonics.3–8 The
radial part of the one-center functions are divided into el-
ement that are shorter near the nucleus and longer farther
away. Each element is divided into an equidistant grid. The
functions in each element are expanded in sixth-order La-
grange interpolation polynomials.5 Similar approaches have
also been suggested by other groups.9,10

There are alternative ways to handle the steep cusps in
the vicinity of the atomic nuclei in fully numerical elec-
tronic structure calculations. A denser grid can be used
near the nuclei11–16 or the steep part of the functions be
eliminated by replacing the core electrons with soft pseu-
dopotentials.17,18 Special coordinate systems can be used to
distribute the grid points in numerical electronic structure
methods for atoms and diatomic molecules.19–24 More ref-
erences to numerical electronic structure approaches can be
found in a recent review article.25 Response equations have
also been solved in the basis-set limit by using a multiwavelet
adaptive basis representation.15,26–28

In our approach, the bubble functions, are obtained by
projection and the cube is expanded on a 3D grid. The
division into bubbles and cube is formally exact, because
what is not included in the bubbles is considered in the cube.
The memory requirement due to the storage of the expansion
coefficients of the cubes can be significantly reduced by using
tensor decomposition methods.29

Fully numerical electronic structure methods are well
aimed for massively parallel computers due to the real-space
structure of the data. Computationally expensive calcula-
tions can be split into independent tasks when the spatial
domain is divided into non-overlapping regions rendering
grid-based fast multipole methods (GBFMM) feasible.3,4 In
real-space calculations, the data are easily organized when
the values of the functions in the grid points are also the
expansion coefficients of the orbitals, potentials and auxil-
iary functions. Efficient algorithms can be designed by us-
ing presceening and by introducing accurate approximations
that speed up the calculations. The computational efficiency
of fully numerical calculations of molecular properties ex-
ceeds the one of Gaussian basis-set calculations when very
large basis sets are used.15,26,28,30
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Differential equations such as the Schrödinger equation
and the Poisson equation can be replaced with the Helmholtz
and Coulomb integral equations, respectively, which con-
sider the appropriate boundary conditions. The computa-
tional costs for integrating the Helmholtz and Poisson ker-
nels appear to be significantly higher than the ones for solv-
ing the corresponding differential equations.11–13,31–38 How-
ever, numerical integration can be parallelized and efficient
algorithms can be employed when expanding the unknown
functions in local tensorial basis functions.3,4,6,39–41

Most of the computational time is spent in calculations of
the cube parts of the orbitals and the potentials. However,
the long-range part of the two-body interactions of the Pois-
son and Helmholtz kernels can be identified and calculated
using grid-based multipole expansions.3,4 The use of tenso-
rial local basis functions implies that the short-range con-
tributions to the electrostatic potentials and in the orbital
optimization can be obtained by a series of matrix multi-
plications, which run efficiently on general purpose graphics
processing units (GPGPU).3,6 The long-range contributions
can be efficiently calculated using a GBFMM approach with
octree partitioning of the spatial domain.3

Calculations of potentials showed that the computational
wall time can even become independent of the system size,
i.e., reaching anN0 scaling when a large number of GPGPUs
are available.3 That means that the computationally most
expensive part of the calculation becomes faster than those
parts of the calculation that are independent of the system
size.

The main part of this work was carried in 2018. Com-
pleting the article has taken the time we needed to recover
from the shock of Eelis Solala’s death due to sudden illness.
He passed away on December 5, 2018 about one month be-
fore the planned submission of his doctoral thesis and this
manuscript.

We have organized the article into the following sections.
In Section 2, we briefly present the bubbles and cube ap-
proach. The Green’s function approach in Section 3 is used
for calculating electrostatic and exchange potentials as dis-
cussed in Section 3.1 as well as for optimizing the orbitals
using the Helmholtz kernel as described in Section 3.2. Solv-
ing the Fock equations using the bubbles and cube approach
is outlined in Section 3.3. The Green’s function approach for
solving the response equations is described in Sections 3.4.
The accuracy of the implemented methods is demonstrated
in Section 4 by calculating polarizabilities for a few small
molecules. The article is summarized in Section 5.

2 The bubbles and cube expansion

The scalar functions encountered in electronic structure cal-
culations are often very steep in the vicinity of the nuclei. In
order to accurately describe the behavior of these functions,
many numerical electronic structure approaches have been
proposed.13,17,28,34,35,42–57

In our bubbles and cube approach,4–8 the unknown
functions f(r) are expanded in a double basis set con-
sisting of atom-centered one-dimensional functions on a
dense radial grid multiplied with spherical harmonics and
a three-dimensional (3D) equidistant grid. The atom-center
fA(rA, θA, ϕA) functions are called bubbles and the f∆(r)
functions on the 3D grid are the cube

f(r) = f∆(r) +
∑
A

fA(rA, θA, ϕA). (1)

The angular part of the bubbles functions are expanded in
a number of spherical harmonics

fA(rA, θA, ϕA) =
∑
lm

fAlm(rA)Ylm(θA, ϕA), (2)

and the one-dimensional (1D) radial functions fAlm(rA) are
expanded in Lagrange interpolating polynomials (χi(rA))

fAlm(rA) =
∑
i

fAlm
i χi(rA), (3)

The radial range is divided into a number of elements, whose
length is shorter closer to the nucleus and longer farther
away from it. The grid points in each element are equidis-
tant. The cube part of the functions is divided into equidis-
tant ranges in the three dimensions, which are expanded in
products of Lagrange interpolating polynomials (χ) on the
grid

f∆(r) =
∑
ijk

f∆
ijkχi(x)χj(y)χk(z). (4)

3 Green’s functions

In electronic structure calculations, one solves equations of
the type

Lu(r) = f(r), (5)

where L is a linear operator, f(r) is a known function, and
u(r) is the unknown function that one would like to know.
One way to solve such equations is to construct the inverse
of L operating on f(r) by using an integral expression

u(r) = L−1f(r) =

∫
G(r, r′)f(r′)dr′, (6)

where the kernel inside the integral is the Green’s function
of operator L, which is defined as

LG(r, r′) = δ(r− r′) (7)

in the physicist’s sign convention where δ is Dirac’s delta
function.

3.1 Poisson equation

The Poisson equation yielding the electrostatic interaction
potential V (r) caused by a charge density ρ(r) is

∇2V = −4πρ. (8)

It can be reformulated and solved using the Green’s function
GP (r, r′), which is the Poisson kernel or Coulomb’s law for
the electrostatic potential

GP (r, r′) =
1

|r− r′| . (9)

by writing the Poisson kernel as an integral over an auxiliary
dimension t

1

|r− r′| =
2√
π

∫ ∞

0

exp(−t2|r− r′|2)dt. (10)

The integrand in Eq. (10) is separable in Cartesian coordi-
nates

exp(−t2|r− r′|2) =

exp(−t2(x− x′)2) exp(−t2(y − y′)2) exp(−t2(z − z′)2), (11)

which can be exploited when developing efficient algorithms.
An alternative way to write the Poisson kernel is to use the
Laplace expansion58
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1

|r− r′| =

∞∑
l=0

4π

2l + 1

l∑
m=−l

(−1)m
rl<

rl+1
>

Y −m
l (θ, ϕ)Y m

l (θ′, ϕ′),

(12)
where r> = max(r, r′), r< = min(r, r′), and Y m

l are the
spherical harmonic functions.

Assuming that a charge density ρ(r) is totally confined
inside a sphere of radius R, Eq. (12) is the multipole expan-
sion of the electrostatic potential V (r) of the charge density
outside it (|r| > R)

V (r) =

∞∑
l=0

1

rl+1

l∑
m=−l

qlmY
m
l (θ, ϕ), (13)

where qlm are the multipole moments

qlm =

∫
|r′|<R

ρ(r′)r′lY m
l (θ′, ϕ′)dr′. (14)

In practice, the multipole expansion is truncated at some
finite value lmax, which enables a compression of the details
of the charge distribution to a finite number of potential
parameters.

3.2 Helmholtz equation

The bound-state Helmholtz equation is

(∇2 − k2)f = −4πg, (15)

where k2 > 0 is a constant. The Green’s function is then
given by

GH(r, r′) =
exp(−k|r− r′|)

|r− r′| . (16)

The potential obtained with this kernel is called the Yukawa
potential,59 the screened Poisson potential or the Debye-
Hückel potential.60 The Helmholtz kernel has an integral
expression similar to that of Eq. (10) for the Poisson kernel61

exp(−k|r− r′|)
|r− r′| =

2√
π

∫ ∞

0

exp(− k2

4t2
− t2|r− r′|2)dt. (17)

The Helmholtz kernel can also be written as a series expan-
sion using complex spherical harmonics Y m

l (θ, φ)62

exp(−|r− r′|)
|r− r′| =

8k

∞∑
l=0

Îl+ 1
2
(kr<)K̂l+ 1

2
(kr>)

l∑
m=−l

Y m
l (θ, ϕ)Y −m

l (θ′, ϕ′) (18)

where Îl+ 1
2

and K̂l+ 1
2

are the modified spherical Bessel func-

tions of order l. Functions obtained by convolution with the
Helmholtz kernel can also be expanded in a multipole se-
ries similar to the electrostatic potential in the case of the
Poisson kernel.4,63–65

3.3 Fock equation

The orbitals are optimized by using the Helmholtz kernel
instead of diagonalizing the Fock matrix as in traditional
self-consistent field (SCF) calculations. The integration of
the Helmholtz kernel G(r, r′)f(r′) is a linear operation im-
plying that it can be performed separately for the bubbles
and the cube parts∫

G(r, r′)f(r′)dr′ =

∫
G(r, r′)f∆(r′)dr′

+
∑
A

∫
G(r, r′)fA(r′)dr′. (19)

where f∆(r′) is a smooth function that is expanded on the
3D grid, whereas the steep fA(r′) functions in the vicinity
of the nuclei are one-center functions. Problems originating
from the singularity of the Helmholtz kernel in Eq. (17) is
circumvented in the cube integration by introducing the in-
tegral transformation that depends on the orbital energy via
k =

√
−2ϵ.4,7,8,13,35

The t integral in Eq. (17) is calculated using quadrature
from t = 0 to tf , which is a large t value.

2√
π

∫ ∞

0

exp(− k2

4t2
− t2|r− r′|2)dt ≈∑

p

ω′
p exp(−t2p|r− r′|2) +

π

t2f
δ(r− r′). (20)

The integration in the last term in Eq. (20) is performed
analytically from tf to infinity. The t-integration weights ω′

p

of the Helmholtz kernel depend on the orbital energy via k
as

ω′
p = ωp exp(− k2

4t2p
), (21)

where ωp are the integration weights of the Poisson kernel. tp
are t-integration points. The t-integration domain is divided
into a linear region [0, tl] , which is integrated using Gaussian
quadrature, the [tl, tf ] interval is integrated using Gaussian
quadrature in logarithmic coordinates, and the integration
in the interval of [tf ,∞[ is calculated analytically. We use
the same t-integration grid for the Helmholtz and Poisson
kernels.

3.4 Response equations

The electric polarizability tensor α is the first derivative of
the dipole moment and the second derivative of the elec-
tronic energy with respect to the strength of the external
electric field in the three Cartesian directions (ϵ, τ ∈ x, y, z)

αϵτ =
∂µϵ

∂Eτ

∣∣∣
Eτ=0

= − ∂2E

∂Eϵ∂Eτ

∣∣∣Eϵ=0
Eτ=0

(22)

Polarizabilities can be obtained by calculating the total en-
ergy for a number of field strengths and differentiating E(E)
numerically at E = 0. Alternatively, the response formalism
can be used.

In the presence of an external perturbation whose strength
is λ, the Fock equation can be written as

(F0 + λF1 + · · · )(ψ0 + λψ1 + · · · ) =

(E0 + λE1 + · · · )(ψ0 + λψ1 + · · · ), (23)

where F0 is the unperturbed Fock operator, E0 is the un-
perturbed energy, and ψ0 is the unperturbed wave function.
F1 is the first order perturbed Fock operator, E1 is the first-
order energy correction, and ψ1 is the first-order response of
the wave function due to the perturbation. Considering con-
tributions to the first order yields the modified Sternheimer
equation15,66,67

F0ψ1 + F1ψ0 = E1ψ0 + E0ψ1. (24)

At the Hartree-Fock level, the first order change in the den-
sity matrix can then be written as

ρ1(r, r′) =
∑
i

ϕi
0(r)ϕi†

1 (r′) + ϕi
1(r)ϕi†

0 (r′), (25)
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where subscripts denote the order of the perturbation and
summation runs over the occupied orbitals i. The perturbed
Fock operator is

F1 = J1 −K1, (26)

where J1 is the perturbed Coulomb operator

J1(r) =

∫
ρ1(r′, r′)

|r− r′| dr′ (27)

and K1 is the perturbed exchange operator

(K1f)(r) =

∫
ρ1(r, r′)f(r′)

|r− r′| dr′ (28)

The idempotency condition of the density matrix leads to
the weak orthogonality condition of the orbital response for
occupied orbitals i and j

⟨ψi
1|ψj

0⟩ + ⟨ψi
0|ψj

1⟩ = 0, (29)

of which the strong orthogonality condition ⟨ψi
0|ψj

1⟩ = 0 is a
special case.

The modified Sternheimer equation in Eq. (24) can be
written as a Helmholtz equation

(∇2 + 2E0)ψ1 = 2(V + J −K)ψ1 + 2F C
1 ψ0 − 2E1ψ0, (30)

where ∇2 originates from the kinetic energy operator, V is
the nuclear attraction potential, J is the Coulomb repulsion
potential between the electrons, and K is the exchange po-
tential. In the presence of an external electric field in the
C ∈ x, y, z direction, the perturbed Fock operator is

F C
1 = J1 −K1 − (r− r0)C, (31)

Introducing the orthogonality condition one obtains

(∇2 + 2E0)ψ1 = 2(V + J −K)ψ1 + 2(1 − ρ0)F C
1 ψ0, (32)

where ρ0 is the unperturbed density matrix. The orbital
response can be obtained by integrating the Helmholtz ker-
nel in the same way as done when solving the Fock equa-
tion. Since the expression for the orbital response has terms
that depend of the orbital response on its right-hand side, it
must be solved iteratively. The orbital response is expanded
in bubbles and cube to avoid numerical integration of steep
functions. When the unperturbed orbitals and the orbital
response are known, the perturbed density matrix and the
polarizability tensor can be calculated as

αϵτ = −
∫
ρϵ1(r, r) rτdr, (33)

where ϵ, τ ∈ x, y, z and

ρ1 =
∑
i∈occ

|ψi
0⟩⟨ψi

1| + |ψi
1⟩⟨ψi

0|. (34)

4 Results

The polarizability αzz of the He atom was calculated at
the Hartree-Fock (HF) level using a cubic grid whose sides
are 6.5 bohr. The obtained αzz values of 1.322233785 a.u.
and 1.322233787 a.u. are practically identical when using
grids with step lengths of 0.10 bohr and 0.05 bohr, respec-
tively. The number of grid points is then 673 = 300763 and
1333 = 2352637, respectively. The αzz values are in excel-
lent agreement with the reference value of 1.32223373 a.u.68

Table 1 shows how accuracy of the parallel and perpen-
dicular components of the polarizability tensor of H2 as well
as its trace is improved when increasing the length of the

Table 1: The parallel and perpendicular components (in
a.u.) of the polarizability tensor of H2 (R=1.40028 bohr)
as well as its trace. The polarizability was calculated at the
Hartree-Fock level for different lengths (lmax) of the bubbles
expansion. The spatial domain is 12.5 bohr in each Cartesian
direction. The obtained values are compared to polarizabil-
ity tensors calculated using the multiresolution multiwavelet
(MRMW) approach.26

lmax box size α∥ α⊥ Tr(α)

2 12.5 6.39140 4.59423 5.19329
3 12.5 6.45030 4.61134 5.22433
4 12.5 6.45092 4.61144 5.22460
5 12.5 6.45114 4.61147 5.22469
MRMWa 6.452 4.612 5.225
aug-cc-pV5Zb 6.45086 4.60381 5.21950
aug-cc-pV6Zb 6.45140 4.60373 5.21962

a Ref. 26.
b Calculated with Turbomole using the aug-cc-pV5Z and
aug-cc-pV6Z basis sets.69–73

bubbles expansion. The accuracy of α⊥ exceeds with three
orders of magnitude the one obtained with large augmented
correlation consistent basis sets. In the cube part, we used
an equidistant 3D grid with 133 grid points in each Carte-
sian direction corresponding to a step length of about 0.1
bohr. The convergence criterion of the energy was 10−9

hartree. The calculations also shows the importance of the
f -type functions in the bubbles when using a small cube
grid. The importance of the cube part diminishes when a
more accurate bubbles basis is used. One could in princi-
ple manage without the cube part when one is not aiming
at calculations in the complete basis-set limit but at cal-
culations that are more accurate than basis-set calculations
using large Gaussian-type basis sets.

Table 2: The elements of the polarizability tensor of NH3

calculated at the Hartree-Fock level using different lengths
(lmax) of the bubbles expansion. The spatial domain is 12.5
bohr in each Cartesian direction.

lmax αxx αyy αzz αave

2 12.636 13.262 12.633 12.844
3 12.771 13.301 12.772 12.948
4 12.778 13.298 12.778 12.951
5 12.778 13.297 12.778 12.951
MRMWa 12.779 13.294 12.779 12.950
aug-cc-pV5Zb 12.773 13.275 12.773 12.940
aug-cc-pV6Zb 12.776 13.287 13.776 12.946

a Ref. 26.
b Calculated with Turbomole using the aug-cc-pV5Z and
aug-cc-pV6Z basis sets.69–73

The elements of the polarizability tensor of NH3 calcu-
lated using different lengths (lmax) of the bubbles expansion
are shown in Table 2. The number of grid points of the cube
part is 1333 corresponding to a step length of about 0.1 bohr
when the spatial domain is 12.5 bohr in each Cartesian di-
rection. The molecular structure of NH3 belongs to the C3v

point group with a NH distance of 1.0120 Å, an HNH angle
of 106.70◦, and the torsion angle is 113.78◦, which was also
used in Ref. 26. The calculated polarizability tensor agrees
well with the one calculated using the multiresolution multi-
wavelet approach. The elements of the polarizability tensor
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calculated using very large augmented correlation consistent
basis sets (5Z and 6Z)72,73 are also close to the ones obtained
in the fully numerical calculations. The deviations appear
in the third decimal.

5 Summary and Conclusions

We have developed and implemented a method to numeri-
cally solve the Sternheimer equation. The orbital response
is obtained by numerical integration of the Helmholtz ker-
nel of the Sternheimer equation instead of iteratively solving
the corresponding linear response equations.1 The approach
is iterative because the orbital response is obtained by inte-
grating the Helmholtz kernel that depends on the orbital
response. We use a dual numerical basis sets consisting
of atom-like basis functions at each nucleus and a three-
dimensional (3D) Cartesian grid. The details of our bubbles
and cube approach is discussed in Ref. 5.

Our numerical approach has many appealing features.
The results converge systematically towards the basis-set
limit when increasing the number of grid points of the cube
or by increasing the number of angular momentum functions
in the bubbles part or both. The bubbles part of the calcu-
lations is very fast because they are one-center calculations.
The cube functions are expanded in local tensorial basis
functions implying that the numerical integration of the cube
functions consists of a series of independent matrix multipli-
cations that run efficiently on GPGPUs.6 The Helmholtz
and Poisson kernels are six-dimensional two-body functions
whose long-range and short-range contributions are easily
identified. The long-range part of the kernel integration
can be replaced by general multipole expansions making
the computations significantly faster.3,4 Integral transfor-
mation of the singular two-body operator and discretiza-
tion of the auxiliary dimension introduce an index that can
be explored in parallel computations. Since the solution of
the Sternheimer equation is expressed as an integration of
the Helmholtz kernel, it can be made faster using the same
GBFMM approach as used in the orbital optimization.

We have calculated the polarizability tensor for He, H2

and NH3 at the Hartree-Fock level. The obtained polar-
izabilities agree well with values previously obtained using
the multiresolution multiwavelet approach. Other linear re-
sponse properties can be calculated analogously. We use
equidistant grid points in each element. However, a higher
accuracy with the same number of grid points would be ob-
tained by using for example a Gauss-Lobatto grid instead of
the equidistant grid.24
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